Check the plausibility and acceptability of muac-for-age z-score (MFAZ) data
Source:R/plausibility_check_mfaz.R
mw_plausibility_check_mfaz.Rd
Check the overall plausibility and acceptability of MFAZ data through a structured test suite encompassing sampling and measurement-related biases checks in the dataset. The test suite in this function follows the recommendation made by Bilukha, O., & Kianian, B. (2023) on the plausibility of constructing a comprehensive plausibility check similar to WFHZ to evaluate the acceptability of MUAC data when the variable age exists in the dataset.
The function works on a data frame returned from this package's wrangling function for age and for MFAZ data.
Value
A summarised table of class data.frame
, of length 17 and width 1, for
the plausibility test results and their respective acceptability ratings.
References
Bilukha, O., & Kianian, B. (2023). Considerations for assessment of measurement quality of mid‐upper arm circumference data in anthropometric surveys and mass nutritional screenings conducted in humanitarian and refugee settings. Maternal & Child Nutrition, 19, e13478. https://doi.org/10.1111/mcn.13478
SMART Initiative (2017). Standardized Monitoring and Assessment for Relief and Transition. Manual 2.0. Available at: https://smartmethodology.org.
Examples
## First wrangle age data ----
data <- mw_wrangle_age(
df = anthro.01,
dos = dos,
dob = dob,
age = age,
.decimals = 2
)
## Then wrangle MUAC data ----
data_muac <- mw_wrangle_muac(
df = data,
sex = sex,
age = age,
muac = muac,
.recode_sex = TRUE,
.recode_muac = TRUE,
.to = "cm"
)
#> ================================================================================
## And finally run plausibility check ----
mw_plausibility_check_mfaz(
df = data_muac,
flags = flag_mfaz,
sex = sex,
muac = muac,
age = age
)
#> # A tibble: 1 × 17
#> n flagged flagged_class sex_ratio sex_ratio_class age_ratio
#> <int> <dbl> <fct> <dbl> <chr> <dbl>
#> 1 1191 0.00504 Excellent 0.297 Excellent 0.636
#> # ℹ 11 more variables: age_ratio_class <chr>, dps <dbl>, dps_class <chr>,
#> # sd <dbl>, sd_class <chr>, skew <dbl>, skew_class <fct>, kurt <dbl>,
#> # kurt_class <fct>, quality_score <dbl>, quality_class <fct>