Calculate z-scores for MUAC-for-age (MFAZ) and identify outliers based on
the SMART methodology. When age is not supplied, only outliers are detected
from the raw MUAC values. The function only works after age has gone through
mw_wrangle_age()
.
Usage
mw_wrangle_muac(
df,
sex,
muac,
age = NULL,
.recode_sex = TRUE,
.recode_muac = TRUE,
.to = c("cm", "mm", "none"),
.decimals = 3
)
Arguments
- df
A
data.frame
object to wrangle data from.- sex
A
numeric
orcharacter
vector of child's sex. Code values should only be 1 or "m" for males and 2 or "f" for females.- muac
A
numeric
vector of child's age in months.- age
A
numeric
vector of child's age in months. Default is NULL.- .recode_sex
Logical. Set to TRUE if the values for
sex
are not coded as 1 (for males) or 2 (for females). Otherwise, set to FALSE (default).- .recode_muac
Logical. Set to TRUE if the values for raw MUAC should be converted to either centimeters or millimeters. Otherwise, set to FALSE (default)
- .to
A choice of the measuring unit to convert MUAC values into. Can be "cm" for centimeters, "mm" for millimeters, or "none" to leave as it is.
- .decimals
The number of decimal places to use for z-score outputs. Default is 3.
Value
A tibble
based on df
. If age = NULL
, flag_muac
variable for
detected MUAC outliers based on raw MUAC is added to df
. Otherwise,
variables named mfaz
for child's MFAZ and flag_mfaz
for detected outliers
based on SMART guidelines are added to df
.
References
Bilukha, O., & Kianian, B. (2023). Considerations for assessment of measurement quality of mid‐upper arm circumference data in anthropometric surveys and mass nutritional screenings conducted in humanitarian and refugee settings. Maternal & Child Nutrition, 19, e13478. https://doi.org/10.1111/mcn.13478
SMART Initiative (2017). Standardized Monitoring and Assessment for Relief and Transition. Manual 2.0. Available at: https://smartmethodology.org.
Examples
## When age is available, wrangle it first before calling the function ----
w <- mw_wrangle_age(
df = anthro.02,
dos = NULL,
dob = NULL,
age = age,
.decimals = 2
)
### Then apply the function to wrangle MUAC data ----
mw_wrangle_muac(
df = w,
sex = sex,
age = age,
muac = muac,
.recode_sex = TRUE,
.recode_muac = TRUE,
.to = "cm",
.decimals = 3
)
#> ================================================================================
#> # A tibble: 2,267 × 15
#> province strata cluster sex age weight height edema muac wtfactor wfhz
#> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 Zambezia Rural 391 2 6.01 8.2 68 n 15.2 825. 0.349
#> 2 Zambezia Rural 404 2 6.01 7.1 65.1 n 13.9 287. -0.006
#> 3 Zambezia Rural 399 2 6.11 7.6 64.1 n 15.5 130. 0.9
#> 4 Zambezia Urban 430 2 6.14 7.9 65.9 n 14.8 1277. 0.876
#> 5 Zambezia Urban 468 2 6.28 6.6 59.7 n 13.2 792. 1.38
#> 6 Zambezia Urban 517 2 6.34 6 61.8 n 12.9 480. -0.583
#> 7 Zambezia Urban 461 2 6.34 6.5 64.4 n 12.3 977. -0.732
#> 8 Zambezia Rural 382 2 6.41 6.5 63.4 n 12.6 165. -0.349
#> 9 Zambezia Urban 502 2 6.41 7.5 66 n 14.2 1083. -0.006
#> 10 Zambezia Urban 500 2 6.41 6.8 64.1 n 13.5 972. -0.441
#> # ℹ 2,257 more rows
#> # ℹ 4 more variables: flag_wfhz <dbl>, mfaz <dbl>, flag_mfaz <dbl>,
#> # age_days <dbl>
## When age is not available ----
mw_wrangle_muac(
df = anthro.02,
sex = sex,
age = NULL,
muac = muac,
.recode_sex = TRUE,
.recode_muac = TRUE,
.to = "cm",
.decimals = 3
)
#> # A tibble: 2,267 × 15
#> province strata cluster sex age weight height edema muac wtfactor wfhz
#> <chr> <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <dbl> <dbl>
#> 1 Zambezia Rural 391 2 6.01 8.2 68 n 152 825. 0.349
#> 2 Zambezia Rural 404 2 6.01 7.1 65.1 n 139 287. -0.006
#> 3 Zambezia Rural 399 2 6.11 7.6 64.1 n 155 130. 0.9
#> 4 Zambezia Urban 430 2 6.14 7.9 65.9 n 148 1277. 0.876
#> 5 Zambezia Urban 468 2 6.28 6.6 59.7 n 132 792. 1.38
#> 6 Zambezia Urban 517 2 6.34 6 61.8 n 129 480. -0.583
#> 7 Zambezia Urban 461 2 6.34 6.5 64.4 n 123 977. -0.732
#> 8 Zambezia Rural 382 2 6.41 6.5 63.4 n 126 165. -0.349
#> 9 Zambezia Urban 502 2 6.41 7.5 66 n 142 1083. -0.006
#> 10 Zambezia Urban 500 2 6.41 6.8 64.1 n 135 972. -0.441
#> # ℹ 2,257 more rows
#> # ℹ 4 more variables: flag_wfhz <dbl>, mfaz <dbl>, flag_mfaz <dbl>,
#> # flag_muac <dbl>