Skip to contents

The prevalence is calculated in accordance with the complex sample design properties inherent to surveys. This includes weighting of survey data where applicable. When either the acceptability of the standard deviation of WFHZ or of the age ratio test is problematic, prevalence is not calculated.

Usage

compute_pps_based_combined_prevalence(
  df,
  .wt = NULL,
  .edema = NULL,
  .summary_by
)

compute_combined_prevalence(df, .wt = NULL, .edema = NULL, .summary_by = NULL)

Arguments

df

An already wrangled dataset of class data.frame to use. Both wranglers (of WFHZ and of MUAC) need to be used sequentially, regardless of the order. Note that MUAC values should be converted to millimeters after using the MUAC wrangler.

.wt

A vector of class double of the final survey weights. Default is NULL assuming a self-weighted survey, as in the ENA for SMART software; otherwise a weighted analysis is computed.

.edema

A vector of class character of edema. Code should be "y" for presence and "n" for absence of bilateral edema. Default is NULL.

.summary_by

A vector of class character of the geographical areas where the data was collected and for which the analysis should be performed.

Value

A summarised table of class data.frame for the descriptive statistics about combined wasting.

Details

A concept of "combined flags" is introduced in this function. It consists of defining as flag any observation that is flagged in either flag_wfhz or flag_mfaz vectors. A new column cflags for combined flags is created and added to df. This ensures that all flagged observations from both WFHZ and MFAZ data are excluded from the combined prevalence analysis.

The table below shows an overview of how cflags are defined

flag_wfhzflag_mfazcflags
101
011
000

Examples


## When .summary_by and .wt are set to NULL ----
p <- compute_combined_prevalence(
df = anthro.02,
.wt = NULL,
.edema = edema,
.summary_by = NULL
)

print(p)
#> # A tibble: 1 × 16
#>   cgam_n cgam_p cgam_p_low cgam_p_upp cgam_p_deff csam_n csam_p csam_p_low
#>    <dbl>  <dbl>      <dbl>      <dbl>       <dbl>  <dbl>  <dbl>      <dbl>
#> 1    199 0.0685     0.0566     0.0804         Inf     68 0.0129    0.00770
#> # ℹ 8 more variables: csam_p_upp <dbl>, csam_p_deff <dbl>, cmam_n <dbl>,
#> #   cmam_p <dbl>, cmam_p_low <dbl>, cmam_p_upp <dbl>, cmam_p_deff <dbl>,
#> #   wt_pop <dbl>

## When .wt is not set to NULL ----
x <- compute_combined_prevalence(
df = anthro.02,
.wt = "wtfactor",
.edema = edema,
.summary_by = NULL
)

print(x)
#> # A tibble: 1 × 16
#>   cgam_n cgam_p cgam_p_low cgam_p_upp cgam_p_deff csam_n csam_p csam_p_low
#>    <dbl>  <dbl>      <dbl>      <dbl>       <dbl>  <dbl>  <dbl>      <dbl>
#> 1    199 0.0708     0.0563     0.0853        1.72     68 0.0151    0.00750
#> # ℹ 8 more variables: csam_p_upp <dbl>, csam_p_deff <dbl>, cmam_n <dbl>,
#> #   cmam_p <dbl>, cmam_p_low <dbl>, cmam_p_upp <dbl>, cmam_p_deff <dbl>,
#> #   wt_pop <dbl>

## When working on data frame with multiple survey areas ----
s <- anthro.03 |>
mw_wrangle_age(
dos = NULL,
dob = NULL,
age = age,
.decimals = 2
) |>
mw_wrangle_muac(
sex = sex,
muac = muac,
age = "age",
.recode_sex = TRUE,
.recode_muac = TRUE,
.to = "cm"
) |>
dplyr::mutate(muac = recode_muac(muac, .to = "mm")) |>
mw_wrangle_wfhz(
sex = sex,
weight = weight,
height = height,
.recode_sex = TRUE) |>
compute_combined_prevalence(
.edema = edema,
.summary_by = district
)
#> ================================================================================
#> ================================================================================

print(s)
#> # A tibble: 4 × 17
#>   district     cgam_n  cgam_p cgam_p_low cgam_p_upp cgam_p_deff csam_n   csam_p
#>   <chr>         <dbl>   <dbl>      <dbl>      <dbl>       <dbl>  <dbl>    <dbl>
#> 1 Metuge           15  0.0538    0.0119      0.0956         Inf      6  0.00538
#> 2 Cahora-Bassa     27  0.0836    0.0493      0.118          Inf      2  0      
#> 3 Chiuta           11  0.0359    0.00701     0.0647         Inf      4  0.00448
#> 4 Maravia          NA NA        NA          NA               NA     NA NA      
#> # ℹ 9 more variables: csam_p_low <dbl>, csam_p_upp <dbl>, csam_p_deff <dbl>,
#> #   cmam_n <dbl>, cmam_p <dbl>, cmam_p_low <dbl>, cmam_p_upp <dbl>,
#> #   cmam_p_deff <dbl>, wt_pop <dbl>