Calculate z-scores for weight-for-height (WFHZ) and identify outliers based on the SMART methodology.
Arguments
- df
A
data.frame
object to wrangle data from.- sex
A
numeric
orcharacter
vector of child's sex. Code values should only be 1 or "m" for males and 2 or "f" for females.- weight
A vector of class
double
of child's weight in kilograms.- height
A vector of class
double
of child's height in centimeters.- .recode_sex
Logical. Set to TRUE if the values for
sex
are not coded as 1 (for males) or 2 (for females). Otherwise, set to FALSE (default).- .decimals
The number of decimal places to use for z-score outputs. Default is 3.
Value
A data frame based on df
with new variables named wfhz
for
child's WFHZ and flag_wfhz
for detected outliers added.
References
SMART Initiative (2017). Standardized Monitoring and Assessment for Relief and Transition. Manual 2.0. Available at: https://smartmethodology.org.
Examples
mw_wrangle_wfhz(
df = anthro.01,
sex = sex,
weight = weight,
height = height,
.recode_sex = TRUE,
.decimals = 2
)
#> ================================================================================
#> # A tibble: 1,191 × 13
#> area dos cluster team sex dob age weight height edema
#> <chr> <date> <int> <int> <dbl> <date> <int> <dbl> <dbl> <chr>
#> 1 District… 2023-12-04 1 3 1 NA 59 15.6 109. n
#> 2 District… 2023-12-04 1 3 1 NA 8 7.5 68.6 n
#> 3 District… 2023-12-04 1 3 1 NA 19 9.7 79.5 n
#> 4 District… 2023-12-04 1 3 2 NA 49 14.3 100. n
#> 5 District… 2023-12-04 1 3 2 NA 32 12.4 92.1 n
#> 6 District… 2023-12-04 1 3 2 NA 17 9.3 77.8 n
#> 7 District… 2023-12-04 1 3 2 NA 20 10.1 80.4 n
#> 8 District… 2023-12-04 1 3 2 NA 27 11.7 87.1 n
#> 9 District… 2023-12-04 1 3 1 NA 46 13.6 98 n
#> 10 District… 2023-12-04 1 3 1 NA 58 17.2 109. n
#> # ℹ 1,181 more rows
#> # ℹ 3 more variables: muac <int>, wfhz <dbl>, flag_wfhz <dbl>