
Package index
-
mwanamwana-package - mwana: An Efficient Workflow for Plausibility Checks and Prevalence Analysis of Wasting in R
-
mw_wrangle_age() - Wrangle child's age
-
mw_wrangle_wfhz() - Wrangle weight-for-height data
-
mw_wrangle_muac() - Wrangle MUAC data
-
mw_stattest_ageratio()mw_stattest_ageratio2() - Test for statistical difference between the proportion of children aged 24 to 59 months old over those aged 6 to 23 months old
-
mw_check_ipcamn_ssreq() - Check whether sample size requirements for IPC Acute Malnutrition (IPC AMN) analysis are met
-
mw_plausibility_check_wfhz() - Check the plausibility and acceptability of weight-for-height z-score (WFHZ) data
-
mw_plausibility_check_mfaz() - Check the plausibility and acceptability of MUAC-for-age z-score (MFAZ) data
-
mw_plausibility_check_muac() - Check the plausibility and acceptability of raw MUAC data
-
mw_neat_output_wfhz() - Clean and format the output tibble returned from the WFHZ plausibility check
-
mw_neat_output_mfaz() - Clean and format the output tibble returned from the MUAC-for-age z-score plausibility check
-
mw_neat_output_muac() - Clean and format the output tibble returned from the MUAC plausibility check
-
mw_estimate_prevalence_wfhz() - Estimate the prevalence of wasting based on weight-for-height z-scores (WFHZ)
-
mw_estimate_prevalence_muac()mw_estimate_smart_age_wt() - Estimate the prevalence of wasting based on MUAC for survey data
-
mw_estimate_prevalence_mfaz() - Estimate the prevalence of wasting based on z-scores of muac-for-age (MFAZ)
-
mw_estimate_prevalence_combined() - Estimate the prevalence of combined wasting
-
mw_estimate_prevalence_screening()mw_estimate_prevalence_screening2() - Estimate the prevalence of wasting based on MUAC for non-survey data
-
get_age_months() - Calculate child's age in months
-
recode_muac() - Convert MUAC values to either centimeters or millimeters
-
flag_outliers()remove_flags() - Identify, flag, and remove outliers
-
define_wasting() - Define wasting
-
anthro.01 - A sample data of district level SMART surveys with location anonymised
-
anthro.02 - A sample of an already wrangled survey data
-
anthro.03 - A sample data of district level SMART surveys conducted in Mozambique
-
anthro.04 - A sample data from a community-based sentinel site in an anonymized location
-
mfaz.01 - A sample mid-upper arm circumference (MUAC) screening data
-
mfaz.02 - A sample SMART survey data with mid-upper arm circumference measurements
-
wfhz.01 - A sample SMART survey data with weight-for-height z-score standard deviation rated as problematic