R/addCDC.R
cdc.Rd
The first function, getCDC()
, is usually called by the addCDC()
function but could be used as a stand-alone calculator for getting z-score
for a given anthropometric measurement.
getCDC(sex, firstPart, secondPart, thirdPart = NA, index = NA, standing = NA) addCDC( data, sex, firstPart, secondPart, thirdPart = NA, index = NA, standing = NULL, output = paste(index, "z", sep = ""), digits = 2 )
sex | A vector specifying the sex of the subject or a character value
for the name of the variable in |
||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
firstPart | A vector or a character value for the name of the variable
in
If name of variable in |
||||||||||||||||
secondPart | A vector or a character value for the name of variable
in
If name of variable in |
||||||||||||||||
thirdPart | A vector or a character value for the name of variable
in |
||||||||||||||||
index | The index to be calculated. One of:
Give a quoted index name as in (e.g.) |
||||||||||||||||
standing | A vector or a character value for name of variable in |
||||||||||||||||
data | A survey dataset as a data.frame object |
||||||||||||||||
output | The name of the column containing the specified index to be
added to the dataset. This is an optional parameter. If you do not specify
a value for output then the added column will take the name of the
specified index with a |
||||||||||||||||
digits | The number of decimal places for |
A data.frame of the survey dataset with the calculated z-scores added.
addCDC()
adds the CDC Growth Reference z-scores to a data frame of
anthropometric data for weight, height or length, head circumference, and
body mass index (BMI)
# Given a male child 10 months old with a weight of 5.7 kgs, height of 64.2 # cms, and MUAC of 125 mm: # # Calculate weight-for-height getCDC(sex = 1, firstPart = 5.7, secondPart = 64.2, index = "wfh", standing = 3)#> [1] NA# calculate weight-for-age getCDC(sex = 1, firstPart = 5.7, secondPart = 10, index = "wfa", standing = 3)#> [1] -4.929997# calculate height-for-age getCDC(sex = 1, firstPart = 64.2, secondPart = 10, index = "hfa", standing = 3)#> [1] -3.58536# Calculate weight-for-height (wfh) for the anthro3 dataset addCDC(data = anthro3, sex = "sex", firstPart = "weight", secondPart = "height", index = "wfh")#> ================================================================================#> psu age sex weight height muac oedema wfhz #> 1 1 10 1 5.7 64.2 125 2 NA #> 2 1 10 2 5.8 64.4 121 2 NA #> 3 1 9 2 6.5 62.2 139 2 NA #> 4 1 11 9 6.5 64.9 129 2 NA #> 5 1 24 2 6.5 72.9 120 2 NA #> 6 1 12 2 6.6 69.4 126 2 NA #> 7 1 9 2 7.0 66.7 136 2 NA #> 8 1 7 1 7.1 63.5 139 2 NA #> 9 1 9 2 7.1 66.2 144 2 NA #> 10 1 16 2 7.2 69.0 131 2 NA #> 11 1 13 2 7.4 68.2 137 2 NA #> 12 1 11 2 7.4 70.0 132 2 NA #> 13 1 14 2 7.5 64.8 125 2 NA #> 14 2 8 2 7.5 65.7 151 2 NA #> 15 2 8 1 7.5 69.1 140 2 NA #> 16 2 13 1 7.6 69.2 131 2 NA #> 17 2 13 2 7.6 70.0 125 2 NA #> 18 2 22 2 7.6 76.2 121 2 NA #> 19 2 16 1 7.7 69.6 136 2 NA #> 20 2 8 2 7.8 63.3 144 2 NA #> 21 2 11 2 7.8 71.5 134 2 NA #> 22 2 14 2 7.8 76.6 124 2 NA #> 23 2 7 1 8.0 66.8 139 2 NA #> 24 2 8 1 8.0 69.3 147 2 NA #> 25 2 24 2 8.2 70.7 125 2 NA #> 26 2 10 1 8.2 71.1 145 2 NA #> 27 3 15 1 8.3 70.4 133 2 NA #> 28 3 14 2 8.3 71.5 137 2 NA #> 29 3 14 2 8.3 72.9 141 2 NA #> 30 3 17 2 8.3 73.5 136 2 NA #> 31 3 15 1 8.3 76.1 133 2 NA #> 32 3 13 2 8.4 71.8 143 2 NA #> 33 3 20 1 8.4 77.8 132 2 -3.17 #> 34 3 29 2 8.5 75.6 127 2 NA #> 35 3 21 2 8.5 75.6 133 2 NA #> 36 3 21 1 8.5 76.7 123 2 NA #> 37 3 17 1 8.5 77.6 137 2 -2.91 #> 38 3 15 2 8.6 74.9 134 2 NA #> 39 3 24 1 8.6 77.8 137 2 -2.80 #> 40 3 12 1 8.7 72.1 156 2 NA #> 41 4 27 2 8.7 75.8 127 2 NA #> 42 4 25 2 8.7 80.8 129 2 -3.16 #> 43 4 25 1 8.8 81.4 125 2 -3.62 #> 44 4 24 2 8.9 74.3 142 2 NA #> 45 4 30 1 9.0 77.6 132 2 -2.03 #> 46 4 22 1 9.0 82.2 135 2 -3.51 #> 47 4 16 1 9.1 76.4 145 2 NA #> 48 4 24 1 9.1 80.0 126 2 -2.64 #> 49 4 17 2 9.2 74.8 144 2 NA #> 50 4 15 2 9.2 75.3 145 2 NA #> 51 4 33 1 9.2 80.1 136 2 -2.51 #> 52 4 25 2 9.2 80.9 142 2 -2.36 #> 53 5 16 1 9.4 75.0 148 2 NA #> 54 5 29 2 9.4 81.9 138 2 -2.35 #> 55 5 16 1 9.5 73.2 151 2 NA #> 56 5 17 1 9.6 73.5 146 2 NA #> 57 5 29 2 9.6 84.6 134 2 -2.85 #> 58 5 16 1 9.7 74.2 148 2 NA #> 59 5 20 1 9.7 80.4 142 2 -1.80 #> 60 5 34 1 9.8 80.2 138 2 -1.60 #> 61 5 21 2 9.8 80.9 145 2 -1.47 #> 62 5 20 1 9.8 82.2 139 2 -2.19 #> 63 5 29 1 9.9 78.6 142 2 -0.97 #> 64 5 25 2 9.9 82.9 138 2 -1.90 #> 65 5 15 1 10.0 75.3 157 2 NA #> 66 6 39 1 10.0 81.4 133 2 -1.66 #> 67 6 9 1 10.1 72.6 155 2 NA #> 68 6 21 1 10.1 76.7 153 2 NA #> 69 6 17 2 10.1 79.1 143 2 -0.56 #> 70 6 25 1 10.1 79.5 140 2 -0.96 #> 71 6 13 2 10.2 74.6 157 2 NA #> 72 6 25 2 10.3 81.3 141 2 -0.90 #> 73 6 31 2 10.3 85.1 130 2 -1.95 #> 74 6 25 2 10.4 81.3 138 2 -0.78 #> 75 6 37 1 10.6 76.2 153 2 NA #> 76 6 25 2 10.6 80.7 138 2 -0.37 #> 77 6 26 1 10.6 83.1 142 2 -1.30 #> 78 6 36 2 10.6 84.2 135 2 -1.30 #> 79 6 37 2 10.7 84.2 150 2 -1.17 #> 80 7 34 2 10.7 85.7 146 2 -1.57 #> 81 7 47 1 10.7 89.8 131 2 -3.01 #> 82 7 12 1 10.8 82.0 147 2 -0.74 #> 83 7 25 2 10.8 83.6 141 2 -0.88 #> 84 7 31 1 10.8 83.8 158 2 -1.23 #> 85 7 34 1 10.8 84.4 144 2 -1.39 #> 86 7 27 2 10.9 79.0 153 2 0.42 #> 87 7 23 2 10.9 85.9 145 2 -1.36 #> 88 7 19 1 11.0 75.4 168 2 NA #> 89 7 26 2 11.0 83.2 145 2 -0.53 #> 90 7 54 1 11.0 85.9 139 2 -1.53 #> 91 7 20 1 11.1 79.9 156 2 0.19 #> 92 7 23 1 11.1 84.7 146 2 -1.08 #> 93 7 43 2 11.1 86.0 142 2 -1.13 #> 94 8 31 1 11.1 87.1 143 2 -1.71 #> 95 8 40 2 11.2 95.2 137 2 -3.74 #> 96 8 18 2 11.3 75.5 161 2 NA #> 97 8 41 1 11.3 89.4 142 2 -2.06 #> 98 8 40 1 11.3 90.7 148 2 -2.41 #> 99 8 33 2 11.3 91.2 139 2 -2.27 #> 100 8 11 1 11.4 78.4 171 2 0.92 #> 101 8 25 1 11.4 82.2 163 2 -0.06 #> 102 8 27 2 11.4 86.8 155 2 -0.97 #> 103 8 38 1 11.4 89.4 141 2 -1.93 #> 104 8 17 2 11.5 80.6 158 2 0.67 #> 105 8 31 2 11.5 85.4 153 2 -0.50 #> 106 9 45 1 11.5 86.2 143 2 -0.97 #> 107 9 53 1 11.6 81.4 153 2 0.37 #> 108 9 23 2 11.6 86.3 143 2 -0.61 #> 109 9 37 1 11.6 86.3 149 2 -0.88 #> 110 9 38 1 11.6 89.9 146 2 -1.80 #> 111 9 40 1 11.7 93.0 140 2 -2.50 #> 112 9 36 1 11.8 87.1 146 2 -0.84 #> 113 9 29 1 11.9 84.3 166 2 -0.03 #> 114 9 26 2 12.0 81.2 164 2 1.03 #> 115 9 33 1 12.0 86.0 154 2 -0.34 #> 116 9 36 1 12.0 87.5 150 2 -0.71 #> 117 9 55 2 12.0 96.2 144 2 -2.78 #> 118 10 16 1 12.1 82.3 157 2 0.68 #> 119 10 35 2 12.1 86.6 147 2 -0.12 #> 120 10 43 1 12.1 91.7 151 2 -1.65 #> 121 10 38 2 12.2 80.9 175 2 1.29 #> 122 10 37 1 12.2 85.5 162 2 0.00 #> 123 10 41 2 12.2 87.6 155 2 -0.25 #> 124 10 45 2 12.2 90.1 149 2 -0.85 #> 125 10 46 2 12.2 99.6 146 2 -3.64 #> 126 10 31 1 12.3 88.0 167 2 -0.50 #> 127 10 44 1 12.3 88.1 151 2 -0.52 #> 128 10 47 2 12.3 94.9 133 2 -1.97 #> 129 10 29 1 12.4 91.8 141 2 -1.32 #> 130 10 46 2 12.4 99.6 140 2 -3.31 #> 131 10 34 1 12.6 87.0 156 2 0.07 #> 132 10 38 2 12.7 85.7 152 2 0.69 #> 133 11 32 1 12.8 87.6 161 2 0.13 #> 134 11 36 1 12.8 90.4 150 2 -0.53 #> 135 11 39 1 12.8 92.7 152 2 -1.09 #> 136 11 42 1 12.8 94.0 146 2 -1.41 #> 137 11 38 2 12.9 83.4 174 2 1.39 #> 138 11 26 2 12.9 86.2 159 2 0.77 #> 139 11 35 1 12.9 90.9 154 2 -0.54 #> 140 11 41 1 12.9 91.2 160 2 -0.62 #> 141 11 32 1 12.9 91.4 148 2 -0.66 #> 142 11 49 1 13.0 93.1 152 2 -0.96 #> 143 11 30 1 13.1 84.3 161 2 1.19 #> 144 11 32 1 13.1 85.1 136 2 1.01 #> 145 11 35 1 13.1 87.5 158 2 0.45 #> 146 11 34 1 13.1 88.6 162 2 0.20 #> 147 11 45 2 13.1 91.6 150 2 -0.24 #> 148 12 29 1 13.2 90.8 158 2 -0.21 #> 149 12 47 2 13.2 91.4 146 2 -0.10 #> 150 12 37 2 13.2 93.8 155 2 -0.64 #> 151 12 35 1 13.3 96.5 142 2 -1.47 #> 152 12 15 2 13.4 82.4 157 2 2.03 #> 153 12 38 2 13.4 93.0 152 2 -0.26 #> 154 12 37 2 13.4 94.1 149 2 -0.51 #> 155 12 53 2 13.4 100.3 145 2 -2.09 #> 156 12 37 2 13.5 84.4 168 2 1.69 #> 157 12 43 1 13.5 96.1 151 2 -1.15 #> 158 12 52 1 13.5 97.0 144 2 -1.38 #> 159 12 45 2 13.5 98.0 148 2 -1.34 #> 160 12 39 2 13.5 99.1 145 2 -1.63 #> 161 12 47 2 13.6 97.0 146 2 -0.99 #> 162 13 26 2 13.7 85.7 171 2 1.58 #> 163 13 24 1 13.8 80.9 172 2 2.54 #> 164 13 38 2 13.8 93.3 153 2 0.05 #> 165 13 57 1 13.8 94.0 149 2 -0.35 #> 166 13 42 2 13.8 103.4 144 2 -2.50 #> 167 13 42 2 13.9 92.3 175 2 0.35 #> 168 13 52 1 13.9 95.5 151 2 -0.60 #> 169 13 52 1 13.9 95.7 156 2 -0.65 #> 170 13 57 2 13.9 97.2 153 2 -0.73 #> 171 13 52 2 13.9 97.8 141 2 -0.87 #> 172 13 52 2 13.9 97.9 155 2 -0.89 #> 173 13 49 2 13.9 98.2 150 2 -0.96 #> 174 13 58 2 14.0 96.6 154 2 -0.49 #> 175 13 50 1 14.0 97.9 158 2 -1.07 #> 176 13 39 2 14.1 93.7 155 2 0.22 #> 177 14 49 2 14.1 96.4 140 2 -0.36 #> 178 14 50 2 14.1 97.1 148 2 -0.51 #> 179 14 59 2 14.1 97.3 152 2 -0.56 #> 180 14 52 2 14.1 102.4 156 2 -1.83 #> 181 14 41 1 14.2 96.7 146 2 -0.59 #> 182 14 53 1 14.2 97.7 151 2 -0.82 #> 183 14 49 2 14.2 98.1 156 2 -0.64 #> 184 14 35 2 14.3 89.8 165 2 1.20 #> 185 14 50 1 14.3 93.7 152 2 0.18 #> 186 14 41 1 14.4 94.8 158 2 0.03 #> 187 14 42 1 14.5 95.1 161 2 0.05 #> 188 14 58 1 14.5 104.9 130 2 -2.45 #> 189 14 49 1 14.7 96.6 152 2 -0.10 #> 190 14 52 2 14.7 96.7 154 2 0.10 #> 191 14 51 2 14.7 99.2 155 2 -0.43 #> 192 14 49 1 14.7 99.6 164 2 -0.79 #> 193 15 42 2 15.0 93.5 172 2 0.97 #> 194 15 28 2 15.1 91.5 164 2 1.44 #> 195 15 41 2 15.2 95.9 165 2 0.64 #> 196 15 53 1 15.3 95.0 166 2 0.75 #> 197 15 58 1 15.3 100.7 155 2 -0.49 #> 198 15 48 1 15.3 103.5 143 2 -1.17 #> 199 15 54 1 15.5 97.9 159 2 0.29 #> 200 15 58 1 15.5 101.3 166 2 -0.46 #> 201 15 52 2 15.6 100.0 164 2 0.12 #> 202 15 50 1 15.7 99.6 153 2 0.09 #> 203 15 53 2 15.7 103.1 158 2 -0.46 #> 204 15 43 1 15.8 91.1 179 2 1.94 #> 205 15 57 1 15.9 103.8 161 2 -0.69 #> 206 15 55 2 16.3 95.4 169 2 1.45 #> 207 16 54 2 15.3 102.0 156 2 -0.54 #> 208 16 44 1 16.3 96.2 173 2 1.25 #> 209 16 47 1 16.3 102.0 166 2 0.05 #> 210 16 57 1 16.3 108.4 138 2 -1.51 #> 211 16 52 1 16.4 103.9 152 2 -0.29 #> 212 16 52 2 16.6 97.8 144 2 1.18 #> 213 16 56 1 16.6 103.9 148 2 -0.13 #> 214 16 55 1 16.7 106.3 154 2 -0.60 #> 215 16 52 1 17.0 101.3 163 2 0.70 #> 216 16 50 1 17.3 101.8 168 2 0.80 #> 217 16 53 1 17.5 102.2 168 2 0.84 #> 218 16 42 1 17.7 100.9 145 2 1.22 #> 219 16 48 2 17.8 111.3 176 2 -0.71 #> 220 16 53 1 17.9 98.7 171 2 1.77 #> 221 16 50 1 18.1 106.4 166 2 0.40# Calculate weight-for-age (wfa) for the anthro3 dataset addCDC(data = anthro3, sex = "sex", firstPart = "weight", secondPart = "age", index = "wfa")#> ================================================================================#> psu age sex weight height muac oedema wfaz #> 1 1 10 1 5.7 64.2 125 2 -4.93 #> 2 1 10 2 5.8 64.4 121 2 -3.86 #> 3 1 9 2 6.5 62.2 139 2 -2.39 #> 4 1 11 9 6.5 64.9 129 2 NA #> 5 1 24 2 6.5 72.9 120 2 -7.28 #> 6 1 12 2 6.6 69.4 126 2 -3.49 #> 7 1 9 2 7.0 66.7 136 2 -1.74 #> 8 1 7 1 7.1 63.5 139 2 -1.47 #> 9 1 9 2 7.1 66.2 144 2 -1.61 #> 10 1 16 2 7.2 69.0 131 2 -3.91 #> 11 1 13 2 7.4 68.2 137 2 -2.71 #> 12 1 11 2 7.4 70.0 132 2 -2.03 #> 13 1 14 2 7.5 64.8 125 2 -2.89 #> 14 2 8 2 7.5 65.7 151 2 -0.69 #> 15 2 8 1 7.5 69.1 140 2 -1.48 #> 16 2 13 1 7.6 69.2 131 2 -3.11 #> 17 2 13 2 7.6 70.0 125 2 -2.45 #> 18 2 22 2 7.6 76.2 121 2 -4.73 #> 19 2 16 1 7.7 69.6 136 2 -3.65 #> 20 2 8 2 7.8 63.3 144 2 -0.34 #> 21 2 11 2 7.8 71.5 134 2 -1.54 #> 22 2 14 2 7.8 76.6 124 2 -2.50 #> 23 2 7 1 8.0 66.8 139 2 -0.43 #> 24 2 8 1 8.0 69.3 147 2 -0.90 #> 25 2 24 2 8.2 70.7 125 2 -4.15 #> 26 2 10 1 8.2 71.1 145 2 -1.48 #> 27 3 15 1 8.3 70.4 133 2 -2.72 #> 28 3 14 2 8.3 71.5 137 2 -1.87 #> 29 3 14 2 8.3 72.9 141 2 -1.87 #> 30 3 17 2 8.3 73.5 136 2 -2.63 #> 31 3 15 1 8.3 76.1 133 2 -2.72 #> 32 3 13 2 8.4 71.8 143 2 -1.47 #> 33 3 20 1 8.4 77.8 132 2 -3.44 #> 34 3 29 2 8.5 75.6 127 2 -4.44 #> 35 3 21 2 8.5 75.6 133 2 -3.19 #> 36 3 21 1 8.5 76.7 123 2 -3.46 #> 37 3 17 1 8.5 77.6 137 2 -2.87 #> 38 3 15 2 8.6 74.9 134 2 -1.78 #> 39 3 24 1 8.6 77.8 137 2 -3.73 #> 40 3 12 1 8.7 72.1 156 2 -1.56 #> 41 4 27 2 8.7 75.8 127 2 -3.87 #> 42 4 25 2 8.7 80.8 129 2 -3.58 #> 43 4 25 1 8.8 81.4 125 2 -3.62 #> 44 4 24 2 8.9 74.3 142 2 -3.16 #> 45 4 30 1 9.0 77.6 132 2 -4.01 #> 46 4 22 1 9.0 82.2 135 2 -3.03 #> 47 4 16 1 9.1 76.4 145 2 -2.04 #> 48 4 24 1 9.1 80.0 126 2 -3.17 #> 49 4 17 2 9.2 74.8 144 2 -1.56 #> 50 4 15 2 9.2 75.3 145 2 -1.11 #> 51 4 33 1 9.2 80.1 136 2 -4.15 #> 52 4 25 2 9.2 80.9 142 2 -2.93 #> 53 5 16 1 9.4 75.0 148 2 -1.73 #> 54 5 29 2 9.4 81.9 138 2 -3.20 #> 55 5 16 1 9.5 73.2 151 2 -1.63 #> 56 5 17 1 9.6 73.5 146 2 -1.70 #> 57 5 29 2 9.6 84.6 134 2 -2.95 #> 58 5 16 1 9.7 74.2 148 2 -1.43 #> 59 5 20 1 9.7 80.4 142 2 -2.05 #> 60 5 34 1 9.8 80.2 138 2 -3.58 #> 61 5 21 2 9.8 80.9 145 2 -1.64 #> 62 5 20 1 9.8 82.2 139 2 -1.95 #> 63 5 29 1 9.9 78.6 142 2 -2.90 #> 64 5 25 2 9.9 82.9 138 2 -2.11 #> 65 5 15 1 10.0 75.3 157 2 -0.96 #> 66 6 39 1 10.0 81.4 133 2 -3.97 #> 67 6 9 1 10.1 72.6 155 2 0.75 #> 68 6 21 1 10.1 76.7 153 2 -1.79 #> 69 6 17 2 10.1 79.1 143 2 -0.63 #> 70 6 25 1 10.1 79.5 140 2 -2.26 #> 71 6 13 2 10.2 74.6 157 2 0.37 #> 72 6 25 2 10.3 81.3 141 2 -1.68 #> 73 6 31 2 10.3 85.1 130 2 -2.39 #> 74 6 25 2 10.4 81.3 138 2 -1.58 #> 75 6 37 1 10.6 76.2 153 2 -3.08 #> 76 6 25 2 10.6 80.7 138 2 -1.38 #> 77 6 26 1 10.6 83.1 142 2 -1.90 #> 78 6 36 2 10.6 84.2 135 2 -2.60 #> 79 6 37 2 10.7 84.2 150 2 -2.59 #> 80 7 34 2 10.7 85.7 146 2 -2.29 #> 81 7 47 1 10.7 89.8 131 2 -4.12 #> 82 7 12 1 10.8 82.0 147 2 0.42 #> 83 7 25 2 10.8 83.6 141 2 -1.19 #> 84 7 31 1 10.8 83.8 158 2 -2.23 #> 85 7 34 1 10.8 84.4 144 2 -2.55 #> 86 7 27 2 10.9 79.0 153 2 -1.34 #> 87 7 23 2 10.9 85.9 145 2 -0.84 #> 88 7 19 1 11.0 75.4 168 2 -0.72 #> 89 7 26 2 11.0 83.2 145 2 -1.13 #> 90 7 54 1 11.0 85.9 139 2 -4.56 #> 91 7 20 1 11.1 79.9 156 2 -0.77 #> 92 7 23 1 11.1 84.7 146 2 -1.13 #> 93 7 43 2 11.1 86.0 142 2 -2.80 #> 94 8 31 1 11.1 87.1 143 2 -1.96 #> 95 8 40 2 11.2 95.2 137 2 -2.40 #> 96 8 18 2 11.3 75.5 161 2 0.26 #> 97 8 41 1 11.3 89.4 142 2 -2.82 #> 98 8 40 1 11.3 90.7 148 2 -2.71 #> 99 8 33 2 11.3 91.2 139 2 -1.61 #> 100 8 11 1 11.4 78.4 171 2 1.17 #> 101 8 25 1 11.4 82.2 163 2 -1.09 #> 102 8 27 2 11.4 86.8 155 2 -0.89 #> 103 8 38 1 11.4 89.4 141 2 -2.41 #> 104 8 17 2 11.5 80.6 158 2 0.61 #> 105 8 31 2 11.5 85.4 153 2 -1.23 #> 106 9 45 1 11.5 86.2 143 2 -3.06 #> 107 9 53 1 11.6 81.4 153 2 -3.81 #> 108 9 23 2 11.6 86.3 143 2 -0.24 #> 109 9 37 1 11.6 86.3 149 2 -2.12 #> 110 9 38 1 11.6 89.9 146 2 -2.22 #> 111 9 40 1 11.7 93.0 140 2 -2.34 #> 112 9 36 1 11.8 87.1 146 2 -1.85 #> 113 9 29 1 11.9 84.3 166 2 -1.08 #> 114 9 26 2 12.0 81.2 164 2 -0.28 #> 115 9 33 1 12.0 86.0 154 2 -1.39 #> 116 9 36 1 12.0 87.5 150 2 -1.68 #> 117 9 55 2 12.0 96.2 144 2 -3.19 #> 118 10 16 1 12.1 82.3 157 2 0.61 #> 119 10 35 2 12.1 86.6 147 2 -1.13 #> 120 10 43 1 12.1 91.7 151 2 -2.30 #> 121 10 38 2 12.2 80.9 175 2 -1.34 #> 122 10 37 1 12.2 85.5 162 2 -1.61 #> 123 10 41 2 12.2 87.6 155 2 -1.62 #> 124 10 45 2 12.2 90.1 149 2 -2.00 #> 125 10 46 2 12.2 99.6 146 2 -2.10 #> 126 10 31 1 12.3 88.0 167 2 -0.96 #> 127 10 44 1 12.3 88.1 151 2 -2.23 #> 128 10 47 2 12.3 94.9 133 2 -2.11 #> 129 10 29 1 12.4 91.8 141 2 -0.69 #> 130 10 46 2 12.4 99.6 140 2 -1.94 #> 131 10 34 1 12.6 87.0 156 2 -1.01 #> 132 10 38 2 12.7 85.7 152 2 -0.96 #> 133 11 32 1 12.8 87.6 161 2 -0.67 #> 134 11 36 1 12.8 90.4 150 2 -1.05 #> 135 11 39 1 12.8 92.7 152 2 -1.33 #> 136 11 42 1 12.8 94.0 146 2 -1.62 #> 137 11 38 2 12.9 83.4 174 2 -0.82 #> 138 11 26 2 12.9 86.2 159 2 0.38 #> 139 11 35 1 12.9 90.9 154 2 -0.88 #> 140 11 41 1 12.9 91.2 160 2 -1.45 #> 141 11 32 1 12.9 91.4 148 2 -0.60 #> 142 11 49 1 13.0 93.1 152 2 -2.15 #> 143 11 30 1 13.1 84.3 161 2 -0.27 #> 144 11 32 1 13.1 85.1 136 2 -0.46 #> 145 11 35 1 13.1 87.5 158 2 -0.73 #> 146 11 34 1 13.1 88.6 162 2 -0.64 #> 147 11 45 2 13.1 91.6 150 2 -1.32 #> 148 12 29 1 13.2 90.8 158 2 -0.11 #> 149 12 47 2 13.2 91.4 146 2 -1.43 #> 150 12 37 2 13.2 93.8 155 2 -0.52 #> 151 12 35 1 13.3 96.5 142 2 -0.59 #> 152 12 15 2 13.4 82.4 157 2 2.37 #> 153 12 38 2 13.4 93.0 152 2 -0.48 #> 154 12 37 2 13.4 94.1 149 2 -0.38 #> 155 12 53 2 13.4 100.3 145 2 -1.84 #> 156 12 37 2 13.5 84.4 168 2 -0.32 #> 157 12 43 1 13.5 96.1 151 2 -1.20 #> 158 12 52 1 13.5 97.0 144 2 -2.06 #> 159 12 45 2 13.5 98.0 148 2 -1.04 #> 160 12 39 2 13.5 99.1 145 2 -0.50 #> 161 12 47 2 13.6 97.0 146 2 -1.15 #> 162 13 26 2 13.7 85.7 171 2 0.90 #> 163 13 24 1 13.8 80.9 172 2 0.78 #> 164 13 38 2 13.8 93.3 153 2 -0.22 #> 165 13 57 1 13.8 94.0 149 2 -2.30 #> 166 13 42 2 13.8 103.4 144 2 -0.58 #> 167 13 42 2 13.9 92.3 175 2 -0.52 #> 168 13 52 1 13.9 95.5 151 2 -1.77 #> 169 13 52 1 13.9 95.7 156 2 -1.77 #> 170 13 57 2 13.9 97.2 153 2 -1.86 #> 171 13 52 2 13.9 97.8 141 2 -1.41 #> 172 13 52 2 13.9 97.9 155 2 -1.41 #> 173 13 49 2 13.9 98.2 150 2 -1.14 #> 174 13 58 2 14.0 96.6 154 2 -1.88 #> 175 13 50 1 14.0 97.9 158 2 -1.51 #> 176 13 39 2 14.1 93.7 155 2 -0.13 #> 177 14 49 2 14.1 96.4 140 2 -1.01 #> 178 14 50 2 14.1 97.1 148 2 -1.10 #> 179 14 59 2 14.1 97.3 152 2 -1.91 #> 180 14 52 2 14.1 102.4 156 2 -1.28 #> 181 14 41 1 14.2 96.7 146 2 -0.54 #> 182 14 53 1 14.2 97.7 151 2 -1.65 #> 183 14 49 2 14.2 98.1 156 2 -0.95 #> 184 14 35 2 14.3 89.8 165 2 0.35 #> 185 14 50 1 14.3 93.7 152 2 -1.31 #> 186 14 41 1 14.4 94.8 158 2 -0.41 #> 187 14 42 1 14.5 95.1 161 2 -0.44 #> 188 14 58 1 14.5 104.9 130 2 -1.90 #> 189 14 49 1 14.7 96.6 152 2 -0.96 #> 190 14 52 2 14.7 96.7 154 2 -0.91 #> 191 14 51 2 14.7 99.2 155 2 -0.83 #> 192 14 49 1 14.7 99.6 164 2 -0.96 #> 193 15 42 2 15.0 93.5 172 2 0.11 #> 194 15 28 2 15.1 91.5 164 2 1.47 #> 195 15 41 2 15.2 95.9 165 2 0.30 #> 196 15 53 1 15.3 95.0 166 2 -0.95 #> 197 15 58 1 15.3 100.7 155 2 -1.39 #> 198 15 48 1 15.3 103.5 143 2 -0.51 #> 199 15 54 1 15.5 97.9 159 2 -0.93 #> 200 15 58 1 15.5 101.3 166 2 -1.27 #> 201 15 52 2 15.6 100.0 164 2 -0.42 #> 202 15 50 1 15.7 99.6 153 2 -0.46 #> 203 15 53 2 15.7 103.1 158 2 -0.45 #> 204 15 43 1 15.8 91.1 179 2 0.22 #> 205 15 57 1 15.9 103.8 161 2 -0.96 #> 206 15 55 2 16.3 95.4 169 2 -0.32 #> 207 16 54 2 15.3 102.0 156 2 -0.75 #> 208 16 44 1 16.3 96.2 173 2 0.39 #> 209 16 47 1 16.3 102.0 166 2 0.12 #> 210 16 57 1 16.3 108.4 138 2 -0.74 #> 211 16 52 1 16.4 103.9 152 2 -0.26 #> 212 16 52 2 16.6 97.8 144 2 0.05 #> 213 16 56 1 16.6 103.9 148 2 -0.50 #> 214 16 55 1 16.7 106.3 154 2 -0.37 #> 215 16 52 1 17.0 101.3 163 2 0.03 #> 216 16 50 1 17.3 101.8 168 2 0.35 #> 217 16 53 1 17.5 102.2 168 2 0.18 #> 218 16 42 1 17.7 100.9 145 2 1.23 #> 219 16 48 2 17.8 111.3 176 2 0.85 #> 220 16 53 1 17.9 98.7 171 2 0.36 #> 221 16 50 1 18.1 106.4 166 2 0.70# Calculate height-for-age (hfa) for the anthro3 dataset addCDC(data = anthro3, sex = "sex", firstPart = "height", secondPart = "age", index = "hfa")#> ================================================================================#> psu age sex weight height muac oedema hfaz #> 1 1 10 1 5.7 64.2 125 2 -3.59 #> 2 1 10 2 5.8 64.4 121 2 -2.39 #> 3 1 9 2 6.5 62.2 139 2 -2.72 #> 4 1 11 9 6.5 64.9 129 2 NA #> 5 1 24 2 6.5 72.9 120 2 -3.46 #> 6 1 12 2 6.6 69.4 126 2 -1.49 #> 7 1 9 2 7.0 66.7 136 2 -1.15 #> 8 1 7 1 7.1 63.5 139 2 -2.13 #> 9 1 9 2 7.1 66.2 144 2 -1.33 #> 10 1 16 2 7.2 69.0 131 2 -2.91 #> 11 1 13 2 7.4 68.2 137 2 -2.24 #> 12 1 11 2 7.4 70.0 132 2 -0.89 #> 13 1 14 2 7.5 64.8 125 2 -3.63 #> 14 2 8 2 7.5 65.7 151 2 -1.01 #> 15 2 8 1 7.5 69.1 140 2 -0.41 #> 16 2 13 1 7.6 69.2 131 2 -2.75 #> 17 2 13 2 7.6 70.0 125 2 -1.66 #> 18 2 22 2 7.6 76.2 121 2 -2.28 #> 19 2 16 1 7.7 69.6 136 2 -3.59 #> 20 2 8 2 7.8 63.3 144 2 -1.88 #> 21 2 11 2 7.8 71.5 134 2 -0.37 #> 22 2 14 2 7.8 76.6 124 2 0.16 #> 23 2 7 1 8.0 66.8 139 2 -0.72 #> 24 2 8 1 8.0 69.3 147 2 -0.34 #> 25 2 24 2 8.2 70.7 125 2 -4.09 #> 26 2 10 1 8.2 71.1 145 2 -0.70 #> 27 3 15 1 8.3 70.4 133 2 -2.98 #> 28 3 14 2 8.3 71.5 137 2 -1.51 #> 29 3 14 2 8.3 72.9 141 2 -1.06 #> 30 3 17 2 8.3 73.5 136 2 -1.81 #> 31 3 15 1 8.3 76.1 133 2 -0.93 #> 32 3 13 2 8.4 71.8 143 2 -1.06 #> 33 3 20 1 8.4 77.8 132 2 -1.84 #> 34 3 29 2 8.5 75.6 127 2 -3.69 #> 35 3 21 2 8.5 75.6 133 2 -2.23 #> 36 3 21 1 8.5 76.7 123 2 -2.42 #> 37 3 17 1 8.5 77.6 137 2 -1.08 #> 38 3 15 2 8.6 74.9 134 2 -0.75 #> 39 3 24 1 8.6 77.8 137 2 -2.49 #> 40 3 12 1 8.7 72.1 156 2 -1.22 #> 41 4 27 2 8.7 75.8 127 2 -3.25 #> 42 4 25 2 8.7 80.8 129 2 -1.43 #> 43 4 25 1 8.8 81.4 125 2 -1.66 #> 44 4 24 2 8.9 74.3 142 2 -3.07 #> 45 4 30 1 9.0 77.6 132 2 -3.81 #> 46 4 22 1 9.0 82.2 135 2 -0.99 #> 47 4 16 1 9.1 76.4 145 2 -1.16 #> 48 4 24 1 9.1 80.0 126 2 -1.86 #> 49 4 17 2 9.2 74.8 144 2 -1.41 #> 50 4 15 2 9.2 75.3 145 2 -0.62 #> 51 4 33 1 9.2 80.1 136 2 -3.68 #> 52 4 25 2 9.2 80.9 142 2 -1.40 #> 53 5 16 1 9.4 75.0 148 2 -1.64 #> 54 5 29 2 9.4 81.9 138 2 -1.97 #> 55 5 16 1 9.5 73.2 151 2 -2.27 #> 56 5 17 1 9.6 73.5 146 2 -2.46 #> 57 5 29 2 9.6 84.6 134 2 -1.24 #> 58 5 16 1 9.7 74.2 148 2 -1.92 #> 59 5 20 1 9.7 80.4 142 2 -1.03 #> 60 5 34 1 9.8 80.2 138 2 -3.86 #> 61 5 21 2 9.8 80.9 145 2 -0.67 #> 62 5 20 1 9.8 82.2 139 2 -0.48 #> 63 5 29 1 9.9 78.6 142 2 -3.30 #> 64 5 25 2 9.9 82.9 138 2 -0.84 #> 65 5 15 1 10.0 75.3 157 2 -1.21 #> 66 6 39 1 10.0 81.4 133 2 -4.30 #> 67 6 9 1 10.1 72.6 155 2 0.34 #> 68 6 21 1 10.1 76.7 153 2 -2.42 #> 69 6 17 2 10.1 79.1 143 2 -0.07 #> 70 6 25 1 10.1 79.5 140 2 -2.20 #> 71 6 13 2 10.2 74.6 157 2 -0.13 #> 72 6 25 2 10.3 81.3 141 2 -1.29 #> 73 6 31 2 10.3 85.1 130 2 -1.49 #> 74 6 25 2 10.4 81.3 138 2 -1.29 #> 75 6 37 1 10.6 76.2 153 2 -5.80 #> 76 6 25 2 10.6 80.7 138 2 -1.46 #> 77 6 26 1 10.6 83.1 142 2 -1.39 #> 78 6 36 2 10.6 84.2 135 2 -2.52 #> 79 6 37 2 10.7 84.2 150 2 -2.66 #> 80 7 34 2 10.7 85.7 146 2 -1.83 #> 81 7 47 1 10.7 89.8 131 2 -2.88 #> 82 7 12 1 10.8 82.0 147 2 2.06 #> 83 7 25 2 10.8 83.6 141 2 -0.64 #> 84 7 31 1 10.8 83.8 158 2 -2.18 #> 85 7 34 1 10.8 84.4 144 2 -2.58 #> 86 7 27 2 10.9 79.0 153 2 -2.37 #> 87 7 23 2 10.9 85.9 145 2 0.29 #> 88 7 19 1 11.0 75.4 168 2 -2.36 #> 89 7 26 2 11.0 83.2 145 2 -0.98 #> 90 7 54 1 11.0 85.9 139 2 -4.40 #> 91 7 20 1 11.1 79.9 156 2 -1.19 #> 92 7 23 1 11.1 84.7 146 2 -0.50 #> 93 7 43 2 11.1 86.0 142 2 -2.97 #> 94 8 31 1 11.1 87.1 143 2 -1.25 #> 95 8 40 2 11.2 95.2 137 2 -0.25 #> 96 8 18 2 11.3 75.5 161 2 -1.48 #> 97 8 41 1 11.3 89.4 142 2 -2.26 #> 98 8 40 1 11.3 90.7 148 2 -1.77 #> 99 8 33 2 11.3 91.2 139 2 -0.23 #> 100 8 11 1 11.4 78.4 171 2 1.36 #> 101 8 25 1 11.4 82.2 163 2 -1.43 #> 102 8 27 2 11.4 86.8 155 2 -0.21 #> 103 8 38 1 11.4 89.4 141 2 -1.83 #> 104 8 17 2 11.5 80.6 158 2 0.41 #> 105 8 31 2 11.5 85.4 153 2 -1.41 #> 106 9 45 1 11.5 86.2 143 2 -3.58 #> 107 9 53 1 11.6 81.4 153 2 -5.34 #> 108 9 23 2 11.6 86.3 143 2 0.40 #> 109 9 37 1 11.6 86.3 149 2 -2.56 #> 110 9 38 1 11.6 89.9 146 2 -1.69 #> 111 9 40 1 11.7 93.0 140 2 -1.15 #> 112 9 36 1 11.8 87.1 146 2 -2.16 #> 113 9 29 1 11.9 84.3 166 2 -1.65 #> 114 9 26 2 12.0 81.2 164 2 -1.54 #> 115 9 33 1 12.0 86.0 154 2 -1.93 #> 116 9 36 1 12.0 87.5 150 2 -2.04 #> 117 9 55 2 12.0 96.2 144 2 -1.94 #> 118 10 16 1 12.1 82.3 157 2 0.74 #> 119 10 35 2 12.1 86.6 147 2 -1.75 #> 120 10 43 1 12.1 91.7 151 2 -1.92 #> 121 10 38 2 12.2 80.9 175 2 -3.68 #> 122 10 37 1 12.2 85.5 162 2 -2.80 #> 123 10 41 2 12.2 87.6 155 2 -2.30 #> 124 10 45 2 12.2 90.1 149 2 -2.18 #> 125 10 46 2 12.2 99.6 146 2 0.00 #> 126 10 31 1 12.3 88.0 167 2 -1.00 #> 127 10 44 1 12.3 88.1 151 2 -2.98 #> 128 10 47 2 12.3 94.9 133 2 -1.25 #> 129 10 29 1 12.4 91.8 141 2 0.41 #> 130 10 46 2 12.4 99.6 140 2 0.00 #> 131 10 34 1 12.6 87.0 156 2 -1.83 #> 132 10 38 2 12.7 85.7 152 2 -2.40 #> 133 11 32 1 12.8 87.6 161 2 -1.29 #> 134 11 36 1 12.8 90.4 150 2 -1.22 #> 135 11 39 1 12.8 92.7 152 2 -1.08 #> 136 11 42 1 12.8 94.0 146 2 -1.19 #> 137 11 38 2 12.9 83.4 174 2 -3.01 #> 138 11 26 2 12.9 86.2 159 2 -0.15 #> 139 11 35 1 12.9 90.9 154 2 -0.91 #> 140 11 41 1 12.9 91.2 160 2 -1.78 #> 141 11 32 1 12.9 91.4 148 2 -0.25 #> 142 11 49 1 13.0 93.1 152 2 -2.29 #> 143 11 30 1 13.1 84.3 161 2 -1.85 #> 144 11 32 1 13.1 85.1 136 2 -2.00 #> 145 11 35 1 13.1 87.5 158 2 -1.86 #> 146 11 34 1 13.1 88.6 162 2 -1.37 #> 147 11 45 2 13.1 91.6 150 2 -1.80 #> 148 12 29 1 13.2 90.8 158 2 0.14 #> 149 12 47 2 13.2 91.4 146 2 -2.10 #> 150 12 37 2 13.2 93.8 155 2 -0.18 #> 151 12 35 1 13.3 96.5 142 2 0.56 #> 152 12 15 2 13.4 82.4 157 2 1.72 #> 153 12 38 2 13.4 93.0 152 2 -0.52 #> 154 12 37 2 13.4 94.1 149 2 -0.10 #> 155 12 53 2 13.4 100.3 145 2 -0.74 #> 156 12 37 2 13.5 84.4 168 2 -2.61 #> 157 12 43 1 13.5 96.1 151 2 -0.80 #> 158 12 52 1 13.5 97.0 144 2 -1.72 #> 159 12 45 2 13.5 98.0 148 2 -0.25 #> 160 12 39 2 13.5 99.1 145 2 0.84 #> 161 12 47 2 13.6 97.0 146 2 -0.75 #> 162 13 26 2 13.7 85.7 171 2 -0.29 #> 163 13 24 1 13.8 80.9 172 2 -1.60 #> 164 13 38 2 13.8 93.3 153 2 -0.45 #> 165 13 57 1 13.8 94.0 149 2 -2.89 #> 166 13 42 2 13.8 103.4 144 2 1.43 #> 167 13 42 2 13.9 92.3 175 2 -1.24 #> 168 13 52 1 13.9 95.5 151 2 -2.06 #> 169 13 52 1 13.9 95.7 156 2 -2.01 #> 170 13 57 2 13.9 97.2 153 2 -1.95 #> 171 13 52 2 13.9 97.8 141 2 -1.19 #> 172 13 52 2 13.9 97.9 155 2 -1.17 #> 173 13 49 2 13.9 98.2 150 2 -0.72 #> 174 13 58 2 14.0 96.6 154 2 -2.21 #> 175 13 50 1 14.0 97.9 158 2 -1.28 #> 176 13 39 2 14.1 93.7 155 2 -0.49 #> 177 14 49 2 14.1 96.4 140 2 -1.14 #> 178 14 50 2 14.1 97.1 148 2 -1.10 #> 179 14 59 2 14.1 97.3 152 2 -2.17 #> 180 14 52 2 14.1 102.4 156 2 -0.14 #> 181 14 41 1 14.2 96.7 146 2 -0.35 #> 182 14 53 1 14.2 97.7 151 2 -1.67 #> 183 14 49 2 14.2 98.1 156 2 -0.74 #> 184 14 35 2 14.3 89.8 165 2 -0.91 #> 185 14 50 1 14.3 93.7 152 2 -2.26 #> 186 14 41 1 14.4 94.8 158 2 -0.84 #> 187 14 42 1 14.5 95.1 161 2 -0.91 #> 188 14 58 1 14.5 104.9 130 2 -0.64 #> 189 14 49 1 14.7 96.6 152 2 -1.46 #> 190 14 52 2 14.7 96.7 154 2 -1.45 #> 191 14 51 2 14.7 99.2 155 2 -0.74 #> 192 14 49 1 14.7 99.6 164 2 -0.75 #> 193 15 42 2 15.0 93.5 172 2 -0.94 #> 194 15 28 2 15.1 91.5 164 2 0.84 #> 195 15 41 2 15.2 95.9 165 2 -0.22 #> 196 15 53 1 15.3 95.0 166 2 -2.28 #> 197 15 58 1 15.3 100.7 155 2 -1.55 #> 198 15 48 1 15.3 103.5 143 2 0.30 #> 199 15 54 1 15.5 97.9 159 2 -1.73 #> 200 15 58 1 15.5 101.3 166 2 -1.42 #> 201 15 52 2 15.6 100.0 164 2 -0.68 #> 202 15 50 1 15.7 99.6 153 2 -0.88 #> 203 15 53 2 15.7 103.1 158 2 -0.11 #> 204 15 43 1 15.8 91.1 179 2 -2.07 #> 205 15 57 1 15.9 103.8 161 2 -0.76 #> 206 15 55 2 16.3 95.4 169 2 -2.13 #> 207 16 54 2 15.3 102.0 156 2 -0.48 #> 208 16 44 1 16.3 96.2 173 2 -0.91 #> 209 16 47 1 16.3 102.0 166 2 0.08 #> 210 16 57 1 16.3 108.4 138 2 0.25 #> 211 16 52 1 16.4 103.9 152 2 -0.14 #> 212 16 52 2 16.6 97.8 144 2 -1.19 #> 213 16 56 1 16.6 103.9 148 2 -0.62 #> 214 16 55 1 16.7 106.3 154 2 0.03 #> 215 16 52 1 17.0 101.3 163 2 -0.73 #> 216 16 50 1 17.3 101.8 168 2 -0.36 #> 217 16 53 1 17.5 102.2 168 2 -0.65 #> 218 16 42 1 17.7 100.9 145 2 0.54 #> 219 16 48 2 17.8 111.3 176 2 2.33 #> 220 16 53 1 17.9 98.7 171 2 -1.44 #> 221 16 50 1 18.1 106.4 166 2 0.71