Function to test performance of LQAS classifier
Source:R/04-test_classifier.R
test_lqas_classifier.Rd
Function to test performance of LQAS classifier
Usage
test_lqas_classifier(
replicates = 20,
runs = 50,
pop = NULL,
n = NULL,
d.lower = NULL,
d.upper = NULL,
p.lower = 0,
p.upper = 100,
fine = 1,
progress = TRUE
)
Arguments
- replicates
Number of replicate LQAS simulations to perform. Default is set to 20 replicates
- runs
Number of simulation runs to perform per coverage proportion. Default is 50 runs
- pop
Population size from which simulated coverage survey data is to be taken from
- n
Sample size of actual or test coverage data
- d.lower
A numeric value for the lower classification threshold
- d.upper
A numeric value for the upper classification threshold
- p.lower
Starting proportion for simulations. Default is 0
- p.upper
Ending proportion for simulations. Default is 100
- fine
Granularity of simulated proportions; Defaul to 1
- progress
Logical. Should simulation progress be shown? Default is TRUE
Examples
test_lqas_classifier(replicates = 5, runs = 5,
pop = 10000, n = 40, d.lower = 60, d.upper = 90)
#> Running simulations for proportion := 0%
#> Running simulations for proportion := 1%
#> Running simulations for proportion := 2%
#> Running simulations for proportion := 3%
#> Running simulations for proportion := 4%
#> Running simulations for proportion := 5%
#> Running simulations for proportion := 6%
#> Running simulations for proportion := 7%
#> Running simulations for proportion := 8%
#> Running simulations for proportion := 9%
#> Running simulations for proportion := 10%
#> Running simulations for proportion := 11%
#> Running simulations for proportion := 12%
#> Running simulations for proportion := 13%
#> Running simulations for proportion := 14%
#> Running simulations for proportion := 15%
#> Running simulations for proportion := 16%
#> Running simulations for proportion := 17%
#> Running simulations for proportion := 18%
#> Running simulations for proportion := 19%
#> Running simulations for proportion := 20%
#> Running simulations for proportion := 21%
#> Running simulations for proportion := 22%
#> Running simulations for proportion := 23%
#> Running simulations for proportion := 24%
#> Running simulations for proportion := 25%
#> Running simulations for proportion := 26%
#> Running simulations for proportion := 27%
#> Running simulations for proportion := 28%
#> Running simulations for proportion := 29%
#> Running simulations for proportion := 30%
#> Running simulations for proportion := 31%
#> Running simulations for proportion := 32%
#> Running simulations for proportion := 33%
#> Running simulations for proportion := 34%
#> Running simulations for proportion := 35%
#> Running simulations for proportion := 36%
#> Running simulations for proportion := 37%
#> Running simulations for proportion := 38%
#> Running simulations for proportion := 39%
#> Running simulations for proportion := 40%
#> Running simulations for proportion := 41%
#> Running simulations for proportion := 42%
#> Running simulations for proportion := 43%
#> Running simulations for proportion := 44%
#> Running simulations for proportion := 45%
#> Running simulations for proportion := 46%
#> Running simulations for proportion := 47%
#> Running simulations for proportion := 48%
#> Running simulations for proportion := 49%
#> Running simulations for proportion := 50%
#> Running simulations for proportion := 51%
#> Running simulations for proportion := 52%
#> Running simulations for proportion := 53%
#> Running simulations for proportion := 54%
#> Running simulations for proportion := 55%
#> Running simulations for proportion := 56%
#> Running simulations for proportion := 57%
#> Running simulations for proportion := 58%
#> Running simulations for proportion := 59%
#> Running simulations for proportion := 60%
#> Running simulations for proportion := 61%
#> Running simulations for proportion := 62%
#> Running simulations for proportion := 63%
#> Running simulations for proportion := 64%
#> Running simulations for proportion := 65%
#> Running simulations for proportion := 66%
#> Running simulations for proportion := 67%
#> Running simulations for proportion := 68%
#> Running simulations for proportion := 69%
#> Running simulations for proportion := 70%
#> Running simulations for proportion := 71%
#> Running simulations for proportion := 72%
#> Running simulations for proportion := 73%
#> Running simulations for proportion := 74%
#> Running simulations for proportion := 75%
#> Running simulations for proportion := 76%
#> Running simulations for proportion := 77%
#> Running simulations for proportion := 78%
#> Running simulations for proportion := 79%
#> Running simulations for proportion := 80%
#> Running simulations for proportion := 81%
#> Running simulations for proportion := 82%
#> Running simulations for proportion := 83%
#> Running simulations for proportion := 84%
#> Running simulations for proportion := 85%
#> Running simulations for proportion := 86%
#> Running simulations for proportion := 87%
#> Running simulations for proportion := 88%
#> Running simulations for proportion := 89%
#> Running simulations for proportion := 90%
#> Running simulations for proportion := 91%
#> Running simulations for proportion := 92%
#> Running simulations for proportion := 93%
#> Running simulations for proportion := 94%
#> Running simulations for proportion := 95%
#> Running simulations for proportion := 96%
#> Running simulations for proportion := 97%
#> Running simulations for proportion := 98%
#> Running simulations for proportion := 99%
#> Running simulations for proportion := 100%
#> Running simulations for proportion := 0%
#> Running simulations for proportion := 1%
#> Running simulations for proportion := 2%
#> Running simulations for proportion := 3%
#> Running simulations for proportion := 4%
#> Running simulations for proportion := 5%
#> Running simulations for proportion := 6%
#> Running simulations for proportion := 7%
#> Running simulations for proportion := 8%
#> Running simulations for proportion := 9%
#> Running simulations for proportion := 10%
#> Running simulations for proportion := 11%
#> Running simulations for proportion := 12%
#> Running simulations for proportion := 13%
#> Running simulations for proportion := 14%
#> Running simulations for proportion := 15%
#> Running simulations for proportion := 16%
#> Running simulations for proportion := 17%
#> Running simulations for proportion := 18%
#> Running simulations for proportion := 19%
#> Running simulations for proportion := 20%
#> Running simulations for proportion := 21%
#> Running simulations for proportion := 22%
#> Running simulations for proportion := 23%
#> Running simulations for proportion := 24%
#> Running simulations for proportion := 25%
#> Running simulations for proportion := 26%
#> Running simulations for proportion := 27%
#> Running simulations for proportion := 28%
#> Running simulations for proportion := 29%
#> Running simulations for proportion := 30%
#> Running simulations for proportion := 31%
#> Running simulations for proportion := 32%
#> Running simulations for proportion := 33%
#> Running simulations for proportion := 34%
#> Running simulations for proportion := 35%
#> Running simulations for proportion := 36%
#> Running simulations for proportion := 37%
#> Running simulations for proportion := 38%
#> Running simulations for proportion := 39%
#> Running simulations for proportion := 40%
#> Running simulations for proportion := 41%
#> Running simulations for proportion := 42%
#> Running simulations for proportion := 43%
#> Running simulations for proportion := 44%
#> Running simulations for proportion := 45%
#> Running simulations for proportion := 46%
#> Running simulations for proportion := 47%
#> Running simulations for proportion := 48%
#> Running simulations for proportion := 49%
#> Running simulations for proportion := 50%
#> Running simulations for proportion := 51%
#> Running simulations for proportion := 52%
#> Running simulations for proportion := 53%
#> Running simulations for proportion := 54%
#> Running simulations for proportion := 55%
#> Running simulations for proportion := 56%
#> Running simulations for proportion := 57%
#> Running simulations for proportion := 58%
#> Running simulations for proportion := 59%
#> Running simulations for proportion := 60%
#> Running simulations for proportion := 61%
#> Running simulations for proportion := 62%
#> Running simulations for proportion := 63%
#> Running simulations for proportion := 64%
#> Running simulations for proportion := 65%
#> Running simulations for proportion := 66%
#> Running simulations for proportion := 67%
#> Running simulations for proportion := 68%
#> Running simulations for proportion := 69%
#> Running simulations for proportion := 70%
#> Running simulations for proportion := 71%
#> Running simulations for proportion := 72%
#> Running simulations for proportion := 73%
#> Running simulations for proportion := 74%
#> Running simulations for proportion := 75%
#> Running simulations for proportion := 76%
#> Running simulations for proportion := 77%
#> Running simulations for proportion := 78%
#> Running simulations for proportion := 79%
#> Running simulations for proportion := 80%
#> Running simulations for proportion := 81%
#> Running simulations for proportion := 82%
#> Running simulations for proportion := 83%
#> Running simulations for proportion := 84%
#> Running simulations for proportion := 85%
#> Running simulations for proportion := 86%
#> Running simulations for proportion := 87%
#> Running simulations for proportion := 88%
#> Running simulations for proportion := 89%
#> Running simulations for proportion := 90%
#> Running simulations for proportion := 91%
#> Running simulations for proportion := 92%
#> Running simulations for proportion := 93%
#> Running simulations for proportion := 94%
#> Running simulations for proportion := 95%
#> Running simulations for proportion := 96%
#> Running simulations for proportion := 97%
#> Running simulations for proportion := 98%
#> Running simulations for proportion := 99%
#> Running simulations for proportion := 100%
#> Running simulations for proportion := 0%
#> Running simulations for proportion := 1%
#> Running simulations for proportion := 2%
#> Running simulations for proportion := 3%
#> Running simulations for proportion := 4%
#> Running simulations for proportion := 5%
#> Running simulations for proportion := 6%
#> Running simulations for proportion := 7%
#> Running simulations for proportion := 8%
#> Running simulations for proportion := 9%
#> Running simulations for proportion := 10%
#> Running simulations for proportion := 11%
#> Running simulations for proportion := 12%
#> Running simulations for proportion := 13%
#> Running simulations for proportion := 14%
#> Running simulations for proportion := 15%
#> Running simulations for proportion := 16%
#> Running simulations for proportion := 17%
#> Running simulations for proportion := 18%
#> Running simulations for proportion := 19%
#> Running simulations for proportion := 20%
#> Running simulations for proportion := 21%
#> Running simulations for proportion := 22%
#> Running simulations for proportion := 23%
#> Running simulations for proportion := 24%
#> Running simulations for proportion := 25%
#> Running simulations for proportion := 26%
#> Running simulations for proportion := 27%
#> Running simulations for proportion := 28%
#> Running simulations for proportion := 29%
#> Running simulations for proportion := 30%
#> Running simulations for proportion := 31%
#> Running simulations for proportion := 32%
#> Running simulations for proportion := 33%
#> Running simulations for proportion := 34%
#> Running simulations for proportion := 35%
#> Running simulations for proportion := 36%
#> Running simulations for proportion := 37%
#> Running simulations for proportion := 38%
#> Running simulations for proportion := 39%
#> Running simulations for proportion := 40%
#> Running simulations for proportion := 41%
#> Running simulations for proportion := 42%
#> Running simulations for proportion := 43%
#> Running simulations for proportion := 44%
#> Running simulations for proportion := 45%
#> Running simulations for proportion := 46%
#> Running simulations for proportion := 47%
#> Running simulations for proportion := 48%
#> Running simulations for proportion := 49%
#> Running simulations for proportion := 50%
#> Running simulations for proportion := 51%
#> Running simulations for proportion := 52%
#> Running simulations for proportion := 53%
#> Running simulations for proportion := 54%
#> Running simulations for proportion := 55%
#> Running simulations for proportion := 56%
#> Running simulations for proportion := 57%
#> Running simulations for proportion := 58%
#> Running simulations for proportion := 59%
#> Running simulations for proportion := 60%
#> Running simulations for proportion := 61%
#> Running simulations for proportion := 62%
#> Running simulations for proportion := 63%
#> Running simulations for proportion := 64%
#> Running simulations for proportion := 65%
#> Running simulations for proportion := 66%
#> Running simulations for proportion := 67%
#> Running simulations for proportion := 68%
#> Running simulations for proportion := 69%
#> Running simulations for proportion := 70%
#> Running simulations for proportion := 71%
#> Running simulations for proportion := 72%
#> Running simulations for proportion := 73%
#> Running simulations for proportion := 74%
#> Running simulations for proportion := 75%
#> Running simulations for proportion := 76%
#> Running simulations for proportion := 77%
#> Running simulations for proportion := 78%
#> Running simulations for proportion := 79%
#> Running simulations for proportion := 80%
#> Running simulations for proportion := 81%
#> Running simulations for proportion := 82%
#> Running simulations for proportion := 83%
#> Running simulations for proportion := 84%
#> Running simulations for proportion := 85%
#> Running simulations for proportion := 86%
#> Running simulations for proportion := 87%
#> Running simulations for proportion := 88%
#> Running simulations for proportion := 89%
#> Running simulations for proportion := 90%
#> Running simulations for proportion := 91%
#> Running simulations for proportion := 92%
#> Running simulations for proportion := 93%
#> Running simulations for proportion := 94%
#> Running simulations for proportion := 95%
#> Running simulations for proportion := 96%
#> Running simulations for proportion := 97%
#> Running simulations for proportion := 98%
#> Running simulations for proportion := 99%
#> Running simulations for proportion := 100%
#> Running simulations for proportion := 0%
#> Running simulations for proportion := 1%
#> Running simulations for proportion := 2%
#> Running simulations for proportion := 3%
#> Running simulations for proportion := 4%
#> Running simulations for proportion := 5%
#> Running simulations for proportion := 6%
#> Running simulations for proportion := 7%
#> Running simulations for proportion := 8%
#> Running simulations for proportion := 9%
#> Running simulations for proportion := 10%
#> Running simulations for proportion := 11%
#> Running simulations for proportion := 12%
#> Running simulations for proportion := 13%
#> Running simulations for proportion := 14%
#> Running simulations for proportion := 15%
#> Running simulations for proportion := 16%
#> Running simulations for proportion := 17%
#> Running simulations for proportion := 18%
#> Running simulations for proportion := 19%
#> Running simulations for proportion := 20%
#> Running simulations for proportion := 21%
#> Running simulations for proportion := 22%
#> Running simulations for proportion := 23%
#> Running simulations for proportion := 24%
#> Running simulations for proportion := 25%
#> Running simulations for proportion := 26%
#> Running simulations for proportion := 27%
#> Running simulations for proportion := 28%
#> Running simulations for proportion := 29%
#> Running simulations for proportion := 30%
#> Running simulations for proportion := 31%
#> Running simulations for proportion := 32%
#> Running simulations for proportion := 33%
#> Running simulations for proportion := 34%
#> Running simulations for proportion := 35%
#> Running simulations for proportion := 36%
#> Running simulations for proportion := 37%
#> Running simulations for proportion := 38%
#> Running simulations for proportion := 39%
#> Running simulations for proportion := 40%
#> Running simulations for proportion := 41%
#> Running simulations for proportion := 42%
#> Running simulations for proportion := 43%
#> Running simulations for proportion := 44%
#> Running simulations for proportion := 45%
#> Running simulations for proportion := 46%
#> Running simulations for proportion := 47%
#> Running simulations for proportion := 48%
#> Running simulations for proportion := 49%
#> Running simulations for proportion := 50%
#> Running simulations for proportion := 51%
#> Running simulations for proportion := 52%
#> Running simulations for proportion := 53%
#> Running simulations for proportion := 54%
#> Running simulations for proportion := 55%
#> Running simulations for proportion := 56%
#> Running simulations for proportion := 57%
#> Running simulations for proportion := 58%
#> Running simulations for proportion := 59%
#> Running simulations for proportion := 60%
#> Running simulations for proportion := 61%
#> Running simulations for proportion := 62%
#> Running simulations for proportion := 63%
#> Running simulations for proportion := 64%
#> Running simulations for proportion := 65%
#> Running simulations for proportion := 66%
#> Running simulations for proportion := 67%
#> Running simulations for proportion := 68%
#> Running simulations for proportion := 69%
#> Running simulations for proportion := 70%
#> Running simulations for proportion := 71%
#> Running simulations for proportion := 72%
#> Running simulations for proportion := 73%
#> Running simulations for proportion := 74%
#> Running simulations for proportion := 75%
#> Running simulations for proportion := 76%
#> Running simulations for proportion := 77%
#> Running simulations for proportion := 78%
#> Running simulations for proportion := 79%
#> Running simulations for proportion := 80%
#> Running simulations for proportion := 81%
#> Running simulations for proportion := 82%
#> Running simulations for proportion := 83%
#> Running simulations for proportion := 84%
#> Running simulations for proportion := 85%
#> Running simulations for proportion := 86%
#> Running simulations for proportion := 87%
#> Running simulations for proportion := 88%
#> Running simulations for proportion := 89%
#> Running simulations for proportion := 90%
#> Running simulations for proportion := 91%
#> Running simulations for proportion := 92%
#> Running simulations for proportion := 93%
#> Running simulations for proportion := 94%
#> Running simulations for proportion := 95%
#> Running simulations for proportion := 96%
#> Running simulations for proportion := 97%
#> Running simulations for proportion := 98%
#> Running simulations for proportion := 99%
#> Running simulations for proportion := 100%
#> Running simulations for proportion := 0%
#> Running simulations for proportion := 1%
#> Running simulations for proportion := 2%
#> Running simulations for proportion := 3%
#> Running simulations for proportion := 4%
#> Running simulations for proportion := 5%
#> Running simulations for proportion := 6%
#> Running simulations for proportion := 7%
#> Running simulations for proportion := 8%
#> Running simulations for proportion := 9%
#> Running simulations for proportion := 10%
#> Running simulations for proportion := 11%
#> Running simulations for proportion := 12%
#> Running simulations for proportion := 13%
#> Running simulations for proportion := 14%
#> Running simulations for proportion := 15%
#> Running simulations for proportion := 16%
#> Running simulations for proportion := 17%
#> Running simulations for proportion := 18%
#> Running simulations for proportion := 19%
#> Running simulations for proportion := 20%
#> Running simulations for proportion := 21%
#> Running simulations for proportion := 22%
#> Running simulations for proportion := 23%
#> Running simulations for proportion := 24%
#> Running simulations for proportion := 25%
#> Running simulations for proportion := 26%
#> Running simulations for proportion := 27%
#> Running simulations for proportion := 28%
#> Running simulations for proportion := 29%
#> Running simulations for proportion := 30%
#> Running simulations for proportion := 31%
#> Running simulations for proportion := 32%
#> Running simulations for proportion := 33%
#> Running simulations for proportion := 34%
#> Running simulations for proportion := 35%
#> Running simulations for proportion := 36%
#> Running simulations for proportion := 37%
#> Running simulations for proportion := 38%
#> Running simulations for proportion := 39%
#> Running simulations for proportion := 40%
#> Running simulations for proportion := 41%
#> Running simulations for proportion := 42%
#> Running simulations for proportion := 43%
#> Running simulations for proportion := 44%
#> Running simulations for proportion := 45%
#> Running simulations for proportion := 46%
#> Running simulations for proportion := 47%
#> Running simulations for proportion := 48%
#> Running simulations for proportion := 49%
#> Running simulations for proportion := 50%
#> Running simulations for proportion := 51%
#> Running simulations for proportion := 52%
#> Running simulations for proportion := 53%
#> Running simulations for proportion := 54%
#> Running simulations for proportion := 55%
#> Running simulations for proportion := 56%
#> Running simulations for proportion := 57%
#> Running simulations for proportion := 58%
#> Running simulations for proportion := 59%
#> Running simulations for proportion := 60%
#> Running simulations for proportion := 61%
#> Running simulations for proportion := 62%
#> Running simulations for proportion := 63%
#> Running simulations for proportion := 64%
#> Running simulations for proportion := 65%
#> Running simulations for proportion := 66%
#> Running simulations for proportion := 67%
#> Running simulations for proportion := 68%
#> Running simulations for proportion := 69%
#> Running simulations for proportion := 70%
#> Running simulations for proportion := 71%
#> Running simulations for proportion := 72%
#> Running simulations for proportion := 73%
#> Running simulations for proportion := 74%
#> Running simulations for proportion := 75%
#> Running simulations for proportion := 76%
#> Running simulations for proportion := 77%
#> Running simulations for proportion := 78%
#> Running simulations for proportion := 79%
#> Running simulations for proportion := 80%
#> Running simulations for proportion := 81%
#> Running simulations for proportion := 82%
#> Running simulations for proportion := 83%
#> Running simulations for proportion := 84%
#> Running simulations for proportion := 85%
#> Running simulations for proportion := 86%
#> Running simulations for proportion := 87%
#> Running simulations for proportion := 88%
#> Running simulations for proportion := 89%
#> Running simulations for proportion := 90%
#> Running simulations for proportion := 91%
#> Running simulations for proportion := 92%
#> Running simulations for proportion := 93%
#> Running simulations for proportion := 94%
#> Running simulations for proportion := 95%
#> Running simulations for proportion := 96%
#> Running simulations for proportion := 97%
#> Running simulations for proportion := 98%
#> Running simulations for proportion := 99%
#> Running simulations for proportion := 100%
#> $x
#> d outcome proportion
#> 1 0 1 0
#> 2 0 1 0
#> 3 0 1 0
#> 4 0 1 0
#> 5 0 1 0
#> 6 0 1 1
#> 7 0 1 1
#> 8 1 1 1
#> 9 0 1 1
#> 10 1 1 1
#> 11 1 1 2
#> 12 0 1 2
#> 13 1 1 2
#> 14 2 1 2
#> 15 0 1 2
#> 16 0 1 3
#> 17 1 1 3
#> 18 2 1 3
#> 19 2 1 3
#> 20 0 1 3
#> 21 1 1 4
#> 22 0 1 4
#> 23 0 1 4
#> 24 1 1 4
#> 25 0 1 4
#> 26 1 1 5
#> 27 2 1 5
#> 28 3 1 5
#> 29 2 1 5
#> 30 2 1 5
#> 31 2 1 6
#> 32 4 1 6
#> 33 6 1 6
#> 34 2 1 6
#> 35 3 1 6
#> 36 5 1 7
#> 37 5 1 7
#> 38 6 1 7
#> 39 0 1 7
#> 40 6 1 7
#> 41 1 1 8
#> 42 2 1 8
#> 43 1 1 8
#> 44 2 1 8
#> 45 1 1 8
#> 46 5 1 9
#> 47 7 1 9
#> 48 3 1 9
#> 49 3 1 9
#> 50 3 1 9
#> 51 5 1 10
#> 52 4 1 10
#> 53 5 1 10
#> 54 8 1 10
#> 55 3 1 10
#> 56 5 1 11
#> 57 3 1 11
#> 58 2 1 11
#> 59 5 1 11
#> 60 5 1 11
#> 61 3 1 12
#> 62 1 1 12
#> 63 7 1 12
#> 64 3 1 12
#> 65 5 1 12
#> 66 2 1 13
#> 67 6 1 13
#> 68 6 1 13
#> 69 8 1 13
#> 70 6 1 13
#> 71 4 1 14
#> 72 5 1 14
#> 73 4 1 14
#> 74 5 1 14
#> 75 7 1 14
#> 76 1 1 15
#> 77 11 1 15
#> 78 4 1 15
#> 79 5 1 15
#> 80 9 1 15
#> 81 7 1 16
#> 82 6 1 16
#> 83 6 1 16
#> 84 7 1 16
#> 85 6 1 16
#> 86 3 1 17
#> 87 9 1 17
#> 88 2 1 17
#> 89 5 1 17
#> 90 10 1 17
#> 91 10 1 18
#> 92 5 1 18
#> 93 1 1 18
#> 94 4 1 18
#> 95 9 1 18
#> 96 8 1 19
#> 97 6 1 19
#> 98 8 1 19
#> 99 4 1 19
#> 100 7 1 19
#> 101 6 1 20
#> 102 6 1 20
#> 103 7 1 20
#> 104 12 1 20
#> 105 13 1 20
#> 106 8 1 21
#> 107 10 1 21
#> 108 5 1 21
#> 109 4 1 21
#> 110 6 1 21
#> 111 6 1 22
#> 112 15 1 22
#> 113 10 1 22
#> 114 14 1 22
#> 115 10 1 22
#> 116 8 1 23
#> 117 10 1 23
#> 118 11 1 23
#> 119 11 1 23
#> 120 7 1 23
#> 121 10 1 24
#> 122 13 1 24
#> 123 10 1 24
#> 124 14 1 24
#> 125 10 1 24
#> 126 14 1 25
#> 127 11 1 25
#> 128 5 1 25
#> 129 10 1 25
#> 130 8 1 25
#> 131 9 1 26
#> 132 12 1 26
#> 133 12 1 26
#> 134 15 1 26
#> 135 9 1 26
#> 136 13 1 27
#> 137 12 1 27
#> 138 10 1 27
#> 139 11 1 27
#> 140 14 1 27
#> 141 11 1 28
#> 142 11 1 28
#> 143 10 1 28
#> 144 10 1 28
#> 145 15 1 28
#> 146 6 1 29
#> 147 9 1 29
#> 148 5 1 29
#> 149 12 1 29
#> 150 14 1 29
#> 151 18 1 30
#> 152 14 1 30
#> 153 13 1 30
#> 154 12 1 30
#> 155 18 1 30
#> 156 12 1 31
#> 157 9 1 31
#> 158 12 1 31
#> 159 12 1 31
#> 160 15 1 31
#> 161 10 1 32
#> 162 14 1 32
#> 163 16 1 32
#> 164 12 1 32
#> 165 13 1 32
#> 166 18 1 33
#> 167 11 1 33
#> 168 14 1 33
#> 169 12 1 33
#> 170 9 1 33
#> 171 17 1 34
#> 172 9 1 34
#> 173 13 1 34
#> 174 9 1 34
#> 175 18 1 34
#> 176 12 1 35
#> 177 16 1 35
#> 178 11 1 35
#> 179 11 1 35
#> 180 15 1 35
#> 181 15 1 36
#> 182 13 1 36
#> 183 13 1 36
#> 184 13 1 36
#> 185 16 1 36
#> 186 15 1 37
#> 187 18 1 37
#> 188 11 1 37
#> 189 17 1 37
#> 190 21 1 37
#> 191 15 1 38
#> 192 13 1 38
#> 193 17 1 38
#> 194 13 1 38
#> 195 16 1 38
#> 196 21 1 39
#> 197 18 1 39
#> 198 11 1 39
#> 199 16 1 39
#> 200 18 1 39
#> 201 10 1 40
#> 202 21 1 40
#> 203 17 1 40
#> 204 19 1 40
#> 205 23 1 40
#> 206 15 1 41
#> 207 14 1 41
#> 208 18 1 41
#> 209 16 1 41
#> 210 15 1 41
#> 211 13 1 42
#> 212 17 1 42
#> 213 10 1 42
#> 214 21 1 42
#> 215 18 1 42
#> 216 18 1 43
#> 217 15 1 43
#> 218 20 1 43
#> 219 12 1 43
#> 220 24 1 43
#> 221 19 1 44
#> 222 18 1 44
#> 223 20 1 44
#> 224 21 1 44
#> 225 13 1 44
#> 226 19 1 45
#> 227 16 1 45
#> 228 14 1 45
#> 229 18 1 45
#> 230 18 1 45
#> 231 15 1 46
#> 232 12 1 46
#> 233 21 1 46
#> 234 21 1 46
#> 235 13 1 46
#> 236 17 1 47
#> 237 21 1 47
#> 238 17 1 47
#> 239 17 1 47
#> 240 20 1 47
#> 241 16 1 48
#> 242 20 1 48
#> 243 19 1 48
#> 244 21 1 48
#> 245 15 1 48
#> 246 16 1 49
#> 247 21 1 49
#> 248 22 1 49
#> 249 21 1 49
#> 250 21 1 49
#> 251 23 1 50
#> 252 19 1 50
#> 253 22 1 50
#> 254 16 1 50
#> 255 16 1 50
#> 256 18 1 51
#> 257 16 1 51
#> 258 21 1 51
#> 259 20 1 51
#> 260 22 1 51
#> 261 19 1 52
#> 262 23 1 52
#> 263 17 1 52
#> 264 23 1 52
#> 265 20 1 52
#> 266 25 2 53
#> 267 18 1 53
#> 268 16 1 53
#> 269 20 1 53
#> 270 20 1 53
#> 271 18 1 54
#> 272 16 1 54
#> 273 21 1 54
#> 274 22 1 54
#> 275 24 1 54
#> 276 22 1 55
#> 277 20 1 55
#> 278 22 1 55
#> 279 23 1 55
#> 280 23 1 55
#> 281 28 2 56
#> 282 25 2 56
#> 283 25 2 56
#> 284 25 2 56
#> 285 26 2 56
#> 286 22 1 57
#> 287 22 1 57
#> 288 16 1 57
#> 289 27 2 57
#> 290 25 2 57
#> 291 26 2 58
#> 292 21 1 58
#> 293 20 1 58
#> 294 26 2 58
#> 295 19 1 58
#> 296 20 1 59
#> 297 24 1 59
#> 298 23 1 59
#> 299 26 2 59
#> 300 16 1 59
#> 301 24 1 60
#> 302 20 1 60
#> 303 24 1 60
#> 304 21 1 60
#> 305 23 1 60
#> 306 20 1 61
#> 307 26 2 61
#> 308 28 2 61
#> 309 26 2 61
#> 310 23 1 61
#> 311 29 2 62
#> 312 30 2 62
#> 313 20 1 62
#> 314 28 2 62
#> 315 25 2 62
#> 316 28 2 63
#> 317 24 1 63
#> 318 26 2 63
#> 319 28 2 63
#> 320 23 1 63
#> 321 26 2 64
#> 322 23 1 64
#> 323 18 1 64
#> 324 28 2 64
#> 325 24 1 64
#> 326 22 1 65
#> 327 32 2 65
#> 328 26 2 65
#> 329 24 1 65
#> 330 27 2 65
#> 331 24 1 66
#> 332 25 2 66
#> 333 25 2 66
#> 334 24 1 66
#> 335 22 1 66
#> 336 26 2 67
#> 337 26 2 67
#> 338 30 2 67
#> 339 21 1 67
#> 340 21 1 67
#> 341 24 1 68
#> 342 29 2 68
#> 343 32 2 68
#> 344 30 2 68
#> 345 29 2 68
#> 346 28 2 69
#> 347 28 2 69
#> 348 26 2 69
#> 349 26 2 69
#> 350 24 1 69
#> 351 28 2 70
#> 352 32 2 70
#> 353 27 2 70
#> 354 27 2 70
#> 355 27 2 70
#> 356 28 2 71
#> 357 29 2 71
#> 358 28 2 71
#> 359 34 2 71
#> 360 28 2 71
#> 361 28 2 72
#> 362 29 2 72
#> 363 29 2 72
#> 364 32 2 72
#> 365 28 2 72
#> 366 27 2 73
#> 367 29 2 73
#> 368 32 2 73
#> 369 28 2 73
#> 370 28 2 73
#> 371 29 2 74
#> 372 29 2 74
#> 373 26 2 74
#> 374 35 2 74
#> 375 29 2 74
#> 376 30 2 75
#> 377 34 2 75
#> 378 28 2 75
#> 379 31 2 75
#> 380 31 2 75
#> 381 26 2 76
#> 382 36 2 76
#> 383 28 2 76
#> 384 25 2 76
#> 385 29 2 76
#> 386 28 2 77
#> 387 31 2 77
#> 388 30 2 77
#> 389 36 2 77
#> 390 34 2 77
#> 391 31 2 78
#> 392 36 2 78
#> 393 28 2 78
#> 394 32 2 78
#> 395 35 2 78
#> 396 31 2 79
#> 397 33 2 79
#> 398 34 2 79
#> 399 35 2 79
#> 400 34 2 79
#> 401 33 2 80
#> 402 31 2 80
#> 403 33 2 80
#> 404 29 2 80
#> 405 33 2 80
#> 406 33 2 81
#> 407 31 2 81
#> 408 31 2 81
#> 409 33 2 81
#> 410 35 2 81
#> 411 32 2 82
#> 412 34 2 82
#> 413 34 2 82
#> 414 34 2 82
#> 415 34 2 82
#> 416 31 2 83
#> 417 34 2 83
#> 418 35 2 83
#> 419 32 2 83
#> 420 33 2 83
#> 421 33 2 84
#> 422 36 2 84
#> 423 36 2 84
#> 424 32 2 84
#> 425 35 2 84
#> 426 37 3 85
#> 427 38 3 85
#> 428 31 2 85
#> 429 37 3 85
#> 430 34 2 85
#> 431 34 2 86
#> 432 32 2 86
#> 433 34 2 86
#> 434 32 2 86
#> 435 36 2 86
#> 436 34 2 87
#> 437 36 2 87
#> 438 34 2 87
#> 439 36 2 87
#> 440 36 2 87
#> 441 36 2 88
#> 442 35 2 88
#> 443 30 2 88
#> 444 34 2 88
#> 445 35 2 88
#> 446 38 3 89
#> 447 35 2 89
#> 448 35 2 89
#> 449 35 2 89
#> 450 33 2 89
#> 451 37 3 90
#> 452 36 2 90
#> 453 38 3 90
#> 454 37 3 90
#> 455 37 3 90
#> 456 36 2 91
#> 457 36 2 91
#> 458 36 2 91
#> 459 36 2 91
#> 460 37 3 91
#> 461 38 3 92
#> 462 39 3 92
#> 463 39 3 92
#> 464 39 3 92
#> 465 39 3 92
#> 466 39 3 93
#> 467 33 2 93
#> 468 38 3 93
#> 469 35 2 93
#> 470 39 3 93
#> 471 37 3 94
#> 472 37 3 94
#> 473 37 3 94
#> 474 37 3 94
#> 475 39 3 94
#> 476 37 3 95
#> 477 39 3 95
#> 478 38 3 95
#> 479 37 3 95
#> 480 37 3 95
#> 481 39 3 96
#> 482 40 3 96
#> 483 40 3 96
#> 484 38 3 96
#> 485 38 3 96
#> 486 39 3 97
#> 487 39 3 97
#> 488 39 3 97
#> 489 40 3 97
#> 490 39 3 97
#> 491 39 3 98
#> 492 40 3 98
#> 493 38 3 98
#> 494 39 3 98
#> 495 39 3 98
#> 496 40 3 99
#> 497 40 3 99
#> 498 39 3 99
#> 499 40 3 99
#> 500 39 3 99
#> 501 40 3 100
#> 502 40 3 100
#> 503 40 3 100
#> 504 40 3 100
#> 505 40 3 100
#> 506 0 1 0
#> 507 0 1 0
#> 508 0 1 0
#> 509 0 1 0
#> 510 0 1 0
#> 511 1 1 1
#> 512 0 1 1
#> 513 0 1 1
#> 514 0 1 1
#> 515 0 1 1
#> 516 0 1 2
#> 517 0 1 2
#> 518 0 1 2
#> 519 0 1 2
#> 520 0 1 2
#> 521 0 1 3
#> 522 5 1 3
#> 523 1 1 3
#> 524 0 1 3
#> 525 1 1 3
#> 526 3 1 4
#> 527 0 1 4
#> 528 3 1 4
#> 529 2 1 4
#> 530 0 1 4
#> 531 1 1 5
#> 532 0 1 5
#> 533 5 1 5
#> 534 7 1 5
#> 535 0 1 5
#> 536 5 1 6
#> 537 1 1 6
#> 538 3 1 6
#> 539 2 1 6
#> 540 4 1 6
#> 541 3 1 7
#> 542 3 1 7
#> 543 4 1 7
#> 544 2 1 7
#> 545 0 1 7
#> 546 5 1 8
#> 547 3 1 8
#> 548 4 1 8
#> 549 4 1 8
#> 550 4 1 8
#> 551 3 1 9
#> 552 1 1 9
#> 553 3 1 9
#> 554 1 1 9
#> 555 4 1 9
#> 556 0 1 10
#> 557 5 1 10
#> 558 4 1 10
#> 559 4 1 10
#> 560 8 1 10
#> 561 2 1 11
#> 562 0 1 11
#> 563 4 1 11
#> 564 3 1 11
#> 565 1 1 11
#> 566 7 1 12
#> 567 4 1 12
#> 568 5 1 12
#> 569 3 1 12
#> 570 3 1 12
#> 571 6 1 13
#> 572 8 1 13
#> 573 5 1 13
#> 574 2 1 13
#> 575 6 1 13
#> 576 7 1 14
#> 577 6 1 14
#> 578 5 1 14
#> 579 4 1 14
#> 580 5 1 14
#> 581 7 1 15
#> 582 8 1 15
#> 583 7 1 15
#> 584 6 1 15
#> 585 7 1 15
#> 586 9 1 16
#> 587 2 1 16
#> 588 9 1 16
#> 589 13 1 16
#> 590 7 1 16
#> 591 9 1 17
#> 592 3 1 17
#> 593 6 1 17
#> 594 8 1 17
#> 595 5 1 17
#> 596 9 1 18
#> 597 5 1 18
#> 598 6 1 18
#> 599 7 1 18
#> 600 7 1 18
#> 601 10 1 19
#> 602 8 1 19
#> 603 8 1 19
#> 604 10 1 19
#> 605 6 1 19
#> 606 14 1 20
#> 607 11 1 20
#> 608 11 1 20
#> 609 7 1 20
#> 610 6 1 20
#> 611 10 1 21
#> 612 7 1 21
#> 613 12 1 21
#> 614 8 1 21
#> 615 4 1 21
#> 616 5 1 22
#> 617 11 1 22
#> 618 9 1 22
#> 619 7 1 22
#> 620 10 1 22
#> 621 10 1 23
#> 622 6 1 23
#> 623 8 1 23
#> 624 13 1 23
#> 625 10 1 23
#> 626 16 1 24
#> 627 5 1 24
#> 628 12 1 24
#> 629 10 1 24
#> 630 6 1 24
#> 631 7 1 25
#> 632 10 1 25
#> 633 11 1 25
#> 634 11 1 25
#> 635 12 1 25
#> 636 15 1 26
#> 637 12 1 26
#> 638 8 1 26
#> 639 11 1 26
#> 640 12 1 26
#> 641 13 1 27
#> 642 12 1 27
#> 643 9 1 27
#> 644 10 1 27
#> 645 10 1 27
#> 646 10 1 28
#> 647 10 1 28
#> 648 10 1 28
#> 649 15 1 28
#> 650 12 1 28
#> 651 11 1 29
#> 652 14 1 29
#> 653 18 1 29
#> 654 15 1 29
#> 655 12 1 29
#> 656 11 1 30
#> 657 15 1 30
#> 658 10 1 30
#> 659 17 1 30
#> 660 11 1 30
#> 661 8 1 31
#> 662 17 1 31
#> 663 14 1 31
#> 664 8 1 31
#> 665 15 1 31
#> 666 17 1 32
#> 667 11 1 32
#> 668 15 1 32
#> 669 7 1 32
#> 670 11 1 32
#> 671 12 1 33
#> 672 17 1 33
#> 673 10 1 33
#> 674 13 1 33
#> 675 11 1 33
#> 676 17 1 34
#> 677 11 1 34
#> 678 13 1 34
#> 679 12 1 34
#> 680 13 1 34
#> 681 12 1 35
#> 682 17 1 35
#> 683 17 1 35
#> 684 16 1 35
#> 685 17 1 35
#> 686 11 1 36
#> 687 9 1 36
#> 688 14 1 36
#> 689 17 1 36
#> 690 12 1 36
#> 691 9 1 37
#> 692 20 1 37
#> 693 13 1 37
#> 694 16 1 37
#> 695 15 1 37
#> 696 11 1 38
#> 697 17 1 38
#> 698 12 1 38
#> 699 19 1 38
#> 700 15 1 38
#> 701 11 1 39
#> 702 14 1 39
#> 703 8 1 39
#> 704 17 1 39
#> 705 15 1 39
#> 706 9 1 40
#> 707 17 1 40
#> 708 20 1 40
#> 709 14 1 40
#> 710 17 1 40
#> 711 19 1 41
#> 712 15 1 41
#> 713 18 1 41
#> 714 23 1 41
#> 715 18 1 41
#> 716 15 1 42
#> 717 17 1 42
#> 718 16 1 42
#> 719 14 1 42
#> 720 15 1 42
#> 721 20 1 43
#> 722 15 1 43
#> 723 10 1 43
#> 724 16 1 43
#> 725 13 1 43
#> 726 21 1 44
#> 727 18 1 44
#> 728 23 1 44
#> 729 24 1 44
#> 730 19 1 44
#> 731 17 1 45
#> 732 17 1 45
#> 733 17 1 45
#> 734 16 1 45
#> 735 19 1 45
#> 736 19 1 46
#> 737 20 1 46
#> 738 20 1 46
#> 739 19 1 46
#> 740 21 1 46
#> 741 21 1 47
#> 742 19 1 47
#> 743 19 1 47
#> 744 17 1 47
#> 745 18 1 47
#> 746 16 1 48
#> 747 18 1 48
#> 748 19 1 48
#> 749 19 1 48
#> 750 17 1 48
#> 751 19 1 49
#> 752 14 1 49
#> 753 22 1 49
#> 754 21 1 49
#> 755 23 1 49
#> 756 21 1 50
#> 757 17 1 50
#> 758 20 1 50
#> 759 16 1 50
#> 760 15 1 50
#> 761 14 1 51
#> 762 22 1 51
#> 763 20 1 51
#> 764 21 1 51
#> 765 20 1 51
#> 766 20 1 52
#> 767 18 1 52
#> 768 24 1 52
#> 769 24 1 52
#> 770 22 1 52
#> 771 19 1 53
#> 772 19 1 53
#> 773 23 1 53
#> 774 27 2 53
#> 775 20 1 53
#> 776 22 1 54
#> 777 26 2 54
#> 778 21 1 54
#> 779 20 1 54
#> 780 18 1 54
#> 781 20 1 55
#> 782 26 2 55
#> 783 23 1 55
#> 784 26 2 55
#> 785 27 2 55
#> 786 23 1 56
#> 787 24 1 56
#> 788 20 1 56
#> 789 28 2 56
#> 790 19 1 56
#> 791 20 1 57
#> 792 26 2 57
#> 793 22 1 57
#> 794 24 1 57
#> 795 25 2 57
#> 796 24 1 58
#> 797 27 2 58
#> 798 25 2 58
#> 799 23 1 58
#> 800 25 2 58
#> 801 24 1 59
#> 802 25 2 59
#> 803 21 1 59
#> 804 31 2 59
#> 805 25 2 59
#> 806 20 1 60
#> 807 24 1 60
#> 808 19 1 60
#> 809 21 1 60
#> 810 28 2 60
#> 811 23 1 61
#> 812 22 1 61
#> 813 22 1 61
#> 814 26 2 61
#> 815 27 2 61
#> 816 25 2 62
#> 817 25 2 62
#> 818 29 2 62
#> 819 27 2 62
#> 820 17 1 62
#> 821 22 1 63
#> 822 25 2 63
#> 823 23 1 63
#> 824 23 1 63
#> 825 27 2 63
#> 826 22 1 64
#> 827 20 1 64
#> 828 19 1 64
#> 829 26 2 64
#> 830 22 1 64
#> 831 26 2 65
#> 832 25 2 65
#> 833 25 2 65
#> 834 29 2 65
#> 835 26 2 65
#> 836 30 2 66
#> 837 24 1 66
#> 838 24 1 66
#> 839 26 2 66
#> 840 28 2 66
#> 841 26 2 67
#> 842 26 2 67
#> 843 25 2 67
#> 844 26 2 67
#> 845 29 2 67
#> 846 34 2 68
#> 847 22 1 68
#> 848 31 2 68
#> 849 27 2 68
#> 850 27 2 68
#> 851 30 2 69
#> 852 27 2 69
#> 853 24 1 69
#> 854 28 2 69
#> 855 30 2 69
#> 856 29 2 70
#> 857 28 2 70
#> 858 24 1 70
#> 859 30 2 70
#> 860 23 1 70
#> 861 31 2 71
#> 862 28 2 71
#> 863 31 2 71
#> 864 27 2 71
#> 865 27 2 71
#> 866 30 2 72
#> 867 25 2 72
#> 868 27 2 72
#> 869 34 2 72
#> 870 32 2 72
#> 871 28 2 73
#> 872 30 2 73
#> 873 29 2 73
#> 874 31 2 73
#> 875 34 2 73
#> 876 28 2 74
#> 877 27 2 74
#> 878 31 2 74
#> 879 28 2 74
#> 880 33 2 74
#> 881 31 2 75
#> 882 31 2 75
#> 883 30 2 75
#> 884 32 2 75
#> 885 29 2 75
#> 886 31 2 76
#> 887 30 2 76
#> 888 29 2 76
#> 889 27 2 76
#> 890 28 2 76
#> 891 34 2 77
#> 892 33 2 77
#> 893 33 2 77
#> 894 25 2 77
#> 895 31 2 77
#> 896 30 2 78
#> 897 33 2 78
#> 898 29 2 78
#> 899 32 2 78
#> 900 32 2 78
#> 901 28 2 79
#> 902 24 1 79
#> 903 33 2 79
#> 904 30 2 79
#> 905 30 2 79
#> 906 31 2 80
#> 907 31 2 80
#> 908 30 2 80
#> 909 33 2 80
#> 910 32 2 80
#> 911 31 2 81
#> 912 30 2 81
#> 913 29 2 81
#> 914 33 2 81
#> 915 36 2 81
#> 916 33 2 82
#> 917 30 2 82
#> 918 34 2 82
#> 919 32 2 82
#> 920 32 2 82
#> 921 35 2 83
#> 922 34 2 83
#> 923 33 2 83
#> 924 33 2 83
#> 925 31 2 83
#> 926 34 2 84
#> 927 31 2 84
#> 928 31 2 84
#> 929 31 2 84
#> 930 33 2 84
#> 931 30 2 85
#> 932 33 2 85
#> 933 31 2 85
#> 934 32 2 85
#> 935 32 2 85
#> 936 35 2 86
#> 937 37 3 86
#> 938 33 2 86
#> 939 30 2 86
#> 940 35 2 86
#> 941 32 2 87
#> 942 35 2 87
#> 943 38 3 87
#> 944 33 2 87
#> 945 37 3 87
#> 946 36 2 88
#> 947 38 3 88
#> 948 35 2 88
#> 949 36 2 88
#> 950 35 2 88
#> 951 34 2 89
#> 952 39 3 89
#> 953 35 2 89
#> 954 36 2 89
#> 955 33 2 89
#> 956 37 3 90
#> 957 35 2 90
#> 958 38 3 90
#> 959 37 3 90
#> 960 38 3 90
#> 961 37 3 91
#> 962 39 3 91
#> 963 37 3 91
#> 964 38 3 91
#> 965 37 3 91
#> 966 40 3 92
#> 967 37 3 92
#> 968 34 2 92
#> 969 38 3 92
#> 970 36 2 92
#> 971 37 3 93
#> 972 35 2 93
#> 973 40 3 93
#> 974 35 2 93
#> 975 40 3 93
#> 976 40 3 94
#> 977 37 3 94
#> 978 33 2 94
#> 979 40 3 94
#> 980 39 3 94
#> 981 40 3 95
#> 982 38 3 95
#> 983 39 3 95
#> 984 38 3 95
#> 985 39 3 95
#> 986 39 3 96
#> 987 40 3 96
#> 988 36 2 96
#> 989 38 3 96
#> 990 36 2 96
#> 991 39 3 97
#> 992 39 3 97
#> 993 39 3 97
#> 994 39 3 97
#> 995 40 3 97
#> 996 39 3 98
#> 997 40 3 98
#> 998 40 3 98
#> 999 39 3 98
#> 1000 40 3 98
#> 1001 40 3 99
#> 1002 39 3 99
#> 1003 38 3 99
#> 1004 39 3 99
#> 1005 39 3 99
#> 1006 40 3 100
#> 1007 40 3 100
#> 1008 40 3 100
#> 1009 40 3 100
#> 1010 40 3 100
#> 1011 0 1 0
#> 1012 0 1 0
#> 1013 0 1 0
#> 1014 0 1 0
#> 1015 0 1 0
#> 1016 0 1 1
#> 1017 0 1 1
#> 1018 0 1 1
#> 1019 0 1 1
#> 1020 0 1 1
#> 1021 2 1 2
#> 1022 1 1 2
#> 1023 1 1 2
#> 1024 0 1 2
#> 1025 2 1 2
#> 1026 2 1 3
#> 1027 1 1 3
#> 1028 1 1 3
#> 1029 0 1 3
#> 1030 1 1 3
#> 1031 3 1 4
#> 1032 2 1 4
#> 1033 4 1 4
#> 1034 5 1 4
#> 1035 2 1 4
#> 1036 2 1 5
#> 1037 4 1 5
#> 1038 4 1 5
#> 1039 4 1 5
#> 1040 2 1 5
#> 1041 3 1 6
#> 1042 2 1 6
#> 1043 3 1 6
#> 1044 1 1 6
#> 1045 5 1 6
#> 1046 3 1 7
#> 1047 4 1 7
#> 1048 1 1 7
#> 1049 5 1 7
#> 1050 3 1 7
#> 1051 2 1 8
#> 1052 3 1 8
#> 1053 2 1 8
#> 1054 0 1 8
#> 1055 5 1 8
#> 1056 1 1 9
#> 1057 3 1 9
#> 1058 6 1 9
#> 1059 3 1 9
#> 1060 4 1 9
#> 1061 0 1 10
#> 1062 3 1 10
#> 1063 6 1 10
#> 1064 7 1 10
#> 1065 4 1 10
#> 1066 2 1 11
#> 1067 3 1 11
#> 1068 6 1 11
#> 1069 5 1 11
#> 1070 4 1 11
#> 1071 10 1 12
#> 1072 4 1 12
#> 1073 4 1 12
#> 1074 5 1 12
#> 1075 2 1 12
#> 1076 6 1 13
#> 1077 3 1 13
#> 1078 4 1 13
#> 1079 5 1 13
#> 1080 1 1 13
#> 1081 10 1 14
#> 1082 4 1 14
#> 1083 13 1 14
#> 1084 3 1 14
#> 1085 5 1 14
#> 1086 3 1 15
#> 1087 9 1 15
#> 1088 5 1 15
#> 1089 10 1 15
#> 1090 7 1 15
#> 1091 4 1 16
#> 1092 7 1 16
#> 1093 5 1 16
#> 1094 7 1 16
#> 1095 4 1 16
#> 1096 9 1 17
#> 1097 3 1 17
#> 1098 4 1 17
#> 1099 9 1 17
#> 1100 6 1 17
#> 1101 7 1 18
#> 1102 4 1 18
#> 1103 6 1 18
#> 1104 5 1 18
#> 1105 4 1 18
#> 1106 7 1 19
#> 1107 4 1 19
#> 1108 6 1 19
#> 1109 6 1 19
#> 1110 11 1 19
#> 1111 10 1 20
#> 1112 8 1 20
#> 1113 5 1 20
#> 1114 8 1 20
#> 1115 6 1 20
#> 1116 10 1 21
#> 1117 14 1 21
#> 1118 6 1 21
#> 1119 8 1 21
#> 1120 9 1 21
#> 1121 8 1 22
#> 1122 5 1 22
#> 1123 8 1 22
#> 1124 7 1 22
#> 1125 7 1 22
#> 1126 11 1 23
#> 1127 6 1 23
#> 1128 13 1 23
#> 1129 6 1 23
#> 1130 10 1 23
#> 1131 10 1 24
#> 1132 6 1 24
#> 1133 12 1 24
#> 1134 8 1 24
#> 1135 17 1 24
#> 1136 12 1 25
#> 1137 11 1 25
#> 1138 10 1 25
#> 1139 13 1 25
#> 1140 6 1 25
#> 1141 12 1 26
#> 1142 8 1 26
#> 1143 14 1 26
#> 1144 9 1 26
#> 1145 12 1 26
#> 1146 9 1 27
#> 1147 12 1 27
#> 1148 13 1 27
#> 1149 10 1 27
#> 1150 10 1 27
#> 1151 12 1 28
#> 1152 10 1 28
#> 1153 13 1 28
#> 1154 12 1 28
#> 1155 12 1 28
#> 1156 14 1 29
#> 1157 8 1 29
#> 1158 13 1 29
#> 1159 11 1 29
#> 1160 12 1 29
#> 1161 18 1 30
#> 1162 9 1 30
#> 1163 17 1 30
#> 1164 15 1 30
#> 1165 10 1 30
#> 1166 8 1 31
#> 1167 19 1 31
#> 1168 10 1 31
#> 1169 16 1 31
#> 1170 11 1 31
#> 1171 12 1 32
#> 1172 12 1 32
#> 1173 8 1 32
#> 1174 8 1 32
#> 1175 16 1 32
#> 1176 10 1 33
#> 1177 11 1 33
#> 1178 18 1 33
#> 1179 18 1 33
#> 1180 13 1 33
#> 1181 18 1 34
#> 1182 9 1 34
#> 1183 13 1 34
#> 1184 9 1 34
#> 1185 17 1 34
#> 1186 6 1 35
#> 1187 8 1 35
#> 1188 15 1 35
#> 1189 12 1 35
#> 1190 15 1 35
#> 1191 17 1 36
#> 1192 9 1 36
#> 1193 12 1 36
#> 1194 21 1 36
#> 1195 11 1 36
#> 1196 13 1 37
#> 1197 22 1 37
#> 1198 9 1 37
#> 1199 14 1 37
#> 1200 14 1 37
#> 1201 20 1 38
#> 1202 12 1 38
#> 1203 15 1 38
#> 1204 20 1 38
#> 1205 16 1 38
#> 1206 10 1 39
#> 1207 10 1 39
#> 1208 19 1 39
#> 1209 19 1 39
#> 1210 12 1 39
#> 1211 17 1 40
#> 1212 18 1 40
#> 1213 21 1 40
#> 1214 15 1 40
#> 1215 13 1 40
#> 1216 19 1 41
#> 1217 13 1 41
#> 1218 11 1 41
#> 1219 16 1 41
#> 1220 18 1 41
#> 1221 10 1 42
#> 1222 15 1 42
#> 1223 19 1 42
#> 1224 10 1 42
#> 1225 20 1 42
#> 1226 18 1 43
#> 1227 24 1 43
#> 1228 15 1 43
#> 1229 15 1 43
#> 1230 17 1 43
#> 1231 21 1 44
#> 1232 17 1 44
#> 1233 17 1 44
#> 1234 20 1 44
#> 1235 14 1 44
#> 1236 16 1 45
#> 1237 17 1 45
#> 1238 18 1 45
#> 1239 18 1 45
#> 1240 25 2 45
#> 1241 17 1 46
#> 1242 18 1 46
#> 1243 16 1 46
#> 1244 13 1 46
#> 1245 23 1 46
#> 1246 19 1 47
#> 1247 22 1 47
#> 1248 17 1 47
#> 1249 19 1 47
#> 1250 13 1 47
#> 1251 19 1 48
#> 1252 17 1 48
#> 1253 16 1 48
#> 1254 24 1 48
#> 1255 22 1 48
#> 1256 16 1 49
#> 1257 19 1 49
#> 1258 18 1 49
#> 1259 15 1 49
#> 1260 23 1 49
#> 1261 23 1 50
#> 1262 21 1 50
#> 1263 15 1 50
#> 1264 25 2 50
#> 1265 17 1 50
#> 1266 15 1 51
#> 1267 21 1 51
#> 1268 29 2 51
#> 1269 20 1 51
#> 1270 17 1 51
#> 1271 23 1 52
#> 1272 21 1 52
#> 1273 21 1 52
#> 1274 23 1 52
#> 1275 20 1 52
#> 1276 22 1 53
#> 1277 18 1 53
#> 1278 16 1 53
#> 1279 19 1 53
#> 1280 23 1 53
#> 1281 20 1 54
#> 1282 24 1 54
#> 1283 23 1 54
#> 1284 22 1 54
#> 1285 20 1 54
#> 1286 26 2 55
#> 1287 21 1 55
#> 1288 17 1 55
#> 1289 23 1 55
#> 1290 19 1 55
#> 1291 20 1 56
#> 1292 24 1 56
#> 1293 23 1 56
#> 1294 22 1 56
#> 1295 23 1 56
#> 1296 28 2 57
#> 1297 20 1 57
#> 1298 27 2 57
#> 1299 24 1 57
#> 1300 25 2 57
#> 1301 15 1 58
#> 1302 20 1 58
#> 1303 21 1 58
#> 1304 21 1 58
#> 1305 21 1 58
#> 1306 26 2 59
#> 1307 20 1 59
#> 1308 25 2 59
#> 1309 24 1 59
#> 1310 22 1 59
#> 1311 25 2 60
#> 1312 21 1 60
#> 1313 24 1 60
#> 1314 25 2 60
#> 1315 18 1 60
#> 1316 25 2 61
#> 1317 27 2 61
#> 1318 17 1 61
#> 1319 32 2 61
#> 1320 25 2 61
#> 1321 25 2 62
#> 1322 18 1 62
#> 1323 23 1 62
#> 1324 27 2 62
#> 1325 23 1 62
#> 1326 20 1 63
#> 1327 26 2 63
#> 1328 27 2 63
#> 1329 25 2 63
#> 1330 25 2 63
#> 1331 27 2 64
#> 1332 27 2 64
#> 1333 27 2 64
#> 1334 23 1 64
#> 1335 22 1 64
#> 1336 19 1 65
#> 1337 25 2 65
#> 1338 29 2 65
#> 1339 31 2 65
#> 1340 27 2 65
#> 1341 28 2 66
#> 1342 25 2 66
#> 1343 24 1 66
#> 1344 23 1 66
#> 1345 27 2 66
#> 1346 26 2 67
#> 1347 31 2 67
#> 1348 23 1 67
#> 1349 26 2 67
#> 1350 30 2 67
#> 1351 30 2 68
#> 1352 31 2 68
#> 1353 25 2 68
#> 1354 21 1 68
#> 1355 29 2 68
#> 1356 28 2 69
#> 1357 30 2 69
#> 1358 27 2 69
#> 1359 31 2 69
#> 1360 27 2 69
#> 1361 28 2 70
#> 1362 25 2 70
#> 1363 26 2 70
#> 1364 27 2 70
#> 1365 25 2 70
#> 1366 29 2 71
#> 1367 31 2 71
#> 1368 31 2 71
#> 1369 26 2 71
#> 1370 29 2 71
#> 1371 29 2 72
#> 1372 32 2 72
#> 1373 28 2 72
#> 1374 28 2 72
#> 1375 28 2 72
#> 1376 31 2 73
#> 1377 32 2 73
#> 1378 33 2 73
#> 1379 29 2 73
#> 1380 30 2 73
#> 1381 27 2 74
#> 1382 26 2 74
#> 1383 34 2 74
#> 1384 30 2 74
#> 1385 33 2 74
#> 1386 35 2 75
#> 1387 28 2 75
#> 1388 35 2 75
#> 1389 28 2 75
#> 1390 25 2 75
#> 1391 29 2 76
#> 1392 30 2 76
#> 1393 30 2 76
#> 1394 31 2 76
#> 1395 33 2 76
#> 1396 27 2 77
#> 1397 25 2 77
#> 1398 32 2 77
#> 1399 26 2 77
#> 1400 29 2 77
#> 1401 33 2 78
#> 1402 28 2 78
#> 1403 35 2 78
#> 1404 29 2 78
#> 1405 31 2 78
#> 1406 30 2 79
#> 1407 31 2 79
#> 1408 33 2 79
#> 1409 33 2 79
#> 1410 31 2 79
#> 1411 33 2 80
#> 1412 32 2 80
#> 1413 32 2 80
#> 1414 31 2 80
#> 1415 33 2 80
#> 1416 30 2 81
#> 1417 32 2 81
#> 1418 34 2 81
#> 1419 33 2 81
#> 1420 33 2 81
#> 1421 34 2 82
#> 1422 30 2 82
#> 1423 34 2 82
#> 1424 31 2 82
#> 1425 33 2 82
#> 1426 31 2 83
#> 1427 33 2 83
#> 1428 34 2 83
#> 1429 28 2 83
#> 1430 36 2 83
#> 1431 32 2 84
#> 1432 32 2 84
#> 1433 35 2 84
#> 1434 32 2 84
#> 1435 32 2 84
#> 1436 32 2 85
#> 1437 32 2 85
#> 1438 36 2 85
#> 1439 31 2 85
#> 1440 36 2 85
#> 1441 34 2 86
#> 1442 36 2 86
#> 1443 36 2 86
#> 1444 33 2 86
#> 1445 36 2 86
#> 1446 38 3 87
#> 1447 36 2 87
#> 1448 37 3 87
#> 1449 37 3 87
#> 1450 31 2 87
#> 1451 38 3 88
#> 1452 35 2 88
#> 1453 33 2 88
#> 1454 37 3 88
#> 1455 35 2 88
#> 1456 35 2 89
#> 1457 35 2 89
#> 1458 37 3 89
#> 1459 37 3 89
#> 1460 33 2 89
#> 1461 40 3 90
#> 1462 38 3 90
#> 1463 38 3 90
#> 1464 36 2 90
#> 1465 35 2 90
#> 1466 38 3 91
#> 1467 36 2 91
#> 1468 36 2 91
#> 1469 38 3 91
#> 1470 37 3 91
#> 1471 36 2 92
#> 1472 37 3 92
#> 1473 38 3 92
#> 1474 37 3 92
#> 1475 38 3 92
#> 1476 37 3 93
#> 1477 36 2 93
#> 1478 39 3 93
#> 1479 37 3 93
#> 1480 36 2 93
#> 1481 36 2 94
#> 1482 38 3 94
#> 1483 37 3 94
#> 1484 40 3 94
#> 1485 38 3 94
#> 1486 35 2 95
#> 1487 40 3 95
#> 1488 39 3 95
#> 1489 38 3 95
#> 1490 39 3 95
#> 1491 39 3 96
#> 1492 38 3 96
#> 1493 38 3 96
#> 1494 37 3 96
#> 1495 40 3 96
#> 1496 40 3 97
#> 1497 39 3 97
#> 1498 40 3 97
#> 1499 39 3 97
#> 1500 39 3 97
#> 1501 39 3 98
#> 1502 39 3 98
#> 1503 39 3 98
#> 1504 40 3 98
#> 1505 39 3 98
#> 1506 40 3 99
#> 1507 40 3 99
#> 1508 40 3 99
#> 1509 38 3 99
#> 1510 40 3 99
#> 1511 40 3 100
#> 1512 40 3 100
#> 1513 40 3 100
#> 1514 40 3 100
#> 1515 40 3 100
#> 1516 0 1 0
#> 1517 0 1 0
#> 1518 0 1 0
#> 1519 0 1 0
#> 1520 0 1 0
#> 1521 0 1 1
#> 1522 1 1 1
#> 1523 0 1 1
#> 1524 1 1 1
#> 1525 2 1 1
#> 1526 0 1 2
#> 1527 0 1 2
#> 1528 1 1 2
#> 1529 0 1 2
#> 1530 0 1 2
#> 1531 0 1 3
#> 1532 1 1 3
#> 1533 2 1 3
#> 1534 0 1 3
#> 1535 0 1 3
#> 1536 2 1 4
#> 1537 0 1 4
#> 1538 0 1 4
#> 1539 2 1 4
#> 1540 2 1 4
#> 1541 2 1 5
#> 1542 2 1 5
#> 1543 2 1 5
#> 1544 1 1 5
#> 1545 0 1 5
#> 1546 3 1 6
#> 1547 3 1 6
#> 1548 3 1 6
#> 1549 2 1 6
#> 1550 2 1 6
#> 1551 1 1 7
#> 1552 4 1 7
#> 1553 4 1 7
#> 1554 0 1 7
#> 1555 2 1 7
#> 1556 2 1 8
#> 1557 4 1 8
#> 1558 4 1 8
#> 1559 3 1 8
#> 1560 1 1 8
#> 1561 0 1 9
#> 1562 3 1 9
#> 1563 4 1 9
#> 1564 3 1 9
#> 1565 5 1 9
#> 1566 4 1 10
#> 1567 4 1 10
#> 1568 8 1 10
#> 1569 6 1 10
#> 1570 5 1 10
#> 1571 7 1 11
#> 1572 1 1 11
#> 1573 5 1 11
#> 1574 5 1 11
#> 1575 5 1 11
#> 1576 1 1 12
#> 1577 7 1 12
#> 1578 4 1 12
#> 1579 5 1 12
#> 1580 6 1 12
#> 1581 2 1 13
#> 1582 9 1 13
#> 1583 6 1 13
#> 1584 2 1 13
#> 1585 3 1 13
#> 1586 6 1 14
#> 1587 7 1 14
#> 1588 2 1 14
#> 1589 4 1 14
#> 1590 6 1 14
#> 1591 4 1 15
#> 1592 4 1 15
#> 1593 4 1 15
#> 1594 5 1 15
#> 1595 10 1 15
#> 1596 9 1 16
#> 1597 9 1 16
#> 1598 5 1 16
#> 1599 5 1 16
#> 1600 7 1 16
#> 1601 5 1 17
#> 1602 5 1 17
#> 1603 2 1 17
#> 1604 9 1 17
#> 1605 5 1 17
#> 1606 5 1 18
#> 1607 3 1 18
#> 1608 7 1 18
#> 1609 4 1 18
#> 1610 6 1 18
#> 1611 7 1 19
#> 1612 14 1 19
#> 1613 10 1 19
#> 1614 7 1 19
#> 1615 10 1 19
#> 1616 7 1 20
#> 1617 9 1 20
#> 1618 8 1 20
#> 1619 6 1 20
#> 1620 10 1 20
#> 1621 7 1 21
#> 1622 5 1 21
#> 1623 5 1 21
#> 1624 7 1 21
#> 1625 13 1 21
#> 1626 7 1 22
#> 1627 5 1 22
#> 1628 7 1 22
#> 1629 12 1 22
#> 1630 6 1 22
#> 1631 9 1 23
#> 1632 8 1 23
#> 1633 10 1 23
#> 1634 12 1 23
#> 1635 7 1 23
#> 1636 14 1 24
#> 1637 15 1 24
#> 1638 14 1 24
#> 1639 10 1 24
#> 1640 8 1 24
#> 1641 15 1 25
#> 1642 7 1 25
#> 1643 7 1 25
#> 1644 8 1 25
#> 1645 12 1 25
#> 1646 15 1 26
#> 1647 9 1 26
#> 1648 14 1 26
#> 1649 11 1 26
#> 1650 10 1 26
#> 1651 9 1 27
#> 1652 15 1 27
#> 1653 8 1 27
#> 1654 11 1 27
#> 1655 12 1 27
#> 1656 9 1 28
#> 1657 14 1 28
#> 1658 15 1 28
#> 1659 14 1 28
#> 1660 13 1 28
#> 1661 11 1 29
#> 1662 11 1 29
#> 1663 8 1 29
#> 1664 10 1 29
#> 1665 21 1 29
#> 1666 12 1 30
#> 1667 10 1 30
#> 1668 14 1 30
#> 1669 14 1 30
#> 1670 11 1 30
#> 1671 17 1 31
#> 1672 15 1 31
#> 1673 18 1 31
#> 1674 12 1 31
#> 1675 16 1 31
#> 1676 15 1 32
#> 1677 15 1 32
#> 1678 14 1 32
#> 1679 13 1 32
#> 1680 13 1 32
#> 1681 14 1 33
#> 1682 14 1 33
#> 1683 15 1 33
#> 1684 14 1 33
#> 1685 17 1 33
#> 1686 17 1 34
#> 1687 11 1 34
#> 1688 17 1 34
#> 1689 20 1 34
#> 1690 13 1 34
#> 1691 14 1 35
#> 1692 10 1 35
#> 1693 19 1 35
#> 1694 16 1 35
#> 1695 10 1 35
#> 1696 19 1 36
#> 1697 14 1 36
#> 1698 17 1 36
#> 1699 8 1 36
#> 1700 11 1 36
#> 1701 14 1 37
#> 1702 15 1 37
#> 1703 16 1 37
#> 1704 11 1 37
#> 1705 14 1 37
#> 1706 19 1 38
#> 1707 17 1 38
#> 1708 13 1 38
#> 1709 21 1 38
#> 1710 15 1 38
#> 1711 11 1 39
#> 1712 20 1 39
#> 1713 19 1 39
#> 1714 13 1 39
#> 1715 17 1 39
#> 1716 17 1 40
#> 1717 16 1 40
#> 1718 19 1 40
#> 1719 14 1 40
#> 1720 18 1 40
#> 1721 16 1 41
#> 1722 16 1 41
#> 1723 14 1 41
#> 1724 18 1 41
#> 1725 11 1 41
#> 1726 24 1 42
#> 1727 19 1 42
#> 1728 22 1 42
#> 1729 17 1 42
#> 1730 14 1 42
#> 1731 20 1 43
#> 1732 18 1 43
#> 1733 21 1 43
#> 1734 17 1 43
#> 1735 20 1 43
#> 1736 20 1 44
#> 1737 17 1 44
#> 1738 16 1 44
#> 1739 21 1 44
#> 1740 20 1 44
#> 1741 21 1 45
#> 1742 16 1 45
#> 1743 17 1 45
#> 1744 17 1 45
#> 1745 18 1 45
#> 1746 18 1 46
#> 1747 17 1 46
#> 1748 19 1 46
#> 1749 16 1 46
#> 1750 19 1 46
#> 1751 19 1 47
#> 1752 21 1 47
#> 1753 16 1 47
#> 1754 20 1 47
#> 1755 25 2 47
#> 1756 19 1 48
#> 1757 24 1 48
#> 1758 23 1 48
#> 1759 18 1 48
#> 1760 24 1 48
#> 1761 18 1 49
#> 1762 22 1 49
#> 1763 13 1 49
#> 1764 19 1 49
#> 1765 23 1 49
#> 1766 23 1 50
#> 1767 20 1 50
#> 1768 21 1 50
#> 1769 18 1 50
#> 1770 22 1 50
#> 1771 20 1 51
#> 1772 21 1 51
#> 1773 20 1 51
#> 1774 22 1 51
#> 1775 22 1 51
#> 1776 21 1 52
#> 1777 20 1 52
#> 1778 21 1 52
#> 1779 20 1 52
#> 1780 15 1 52
#> 1781 22 1 53
#> 1782 26 2 53
#> 1783 18 1 53
#> 1784 23 1 53
#> 1785 18 1 53
#> 1786 20 1 54
#> 1787 18 1 54
#> 1788 23 1 54
#> 1789 21 1 54
#> 1790 22 1 54
#> 1791 17 1 55
#> 1792 24 1 55
#> 1793 16 1 55
#> 1794 27 2 55
#> 1795 22 1 55
#> 1796 27 2 56
#> 1797 22 1 56
#> 1798 26 2 56
#> 1799 23 1 56
#> 1800 25 2 56
#> 1801 24 1 57
#> 1802 27 2 57
#> 1803 21 1 57
#> 1804 28 2 57
#> 1805 23 1 57
#> 1806 24 1 58
#> 1807 19 1 58
#> 1808 25 2 58
#> 1809 24 1 58
#> 1810 24 1 58
#> 1811 24 1 59
#> 1812 32 2 59
#> 1813 23 1 59
#> 1814 25 2 59
#> 1815 16 1 59
#> 1816 23 1 60
#> 1817 25 2 60
#> 1818 18 1 60
#> 1819 27 2 60
#> 1820 17 1 60
#> 1821 27 2 61
#> 1822 24 1 61
#> 1823 26 2 61
#> 1824 27 2 61
#> 1825 26 2 61
#> 1826 24 1 62
#> 1827 22 1 62
#> 1828 24 1 62
#> 1829 28 2 62
#> 1830 25 2 62
#> 1831 25 2 63
#> 1832 25 2 63
#> 1833 22 1 63
#> 1834 24 1 63
#> 1835 28 2 63
#> 1836 29 2 64
#> 1837 26 2 64
#> 1838 27 2 64
#> 1839 25 2 64
#> 1840 29 2 64
#> 1841 31 2 65
#> 1842 31 2 65
#> 1843 32 2 65
#> 1844 29 2 65
#> 1845 22 1 65
#> 1846 25 2 66
#> 1847 23 1 66
#> 1848 32 2 66
#> 1849 27 2 66
#> 1850 26 2 66
#> 1851 32 2 67
#> 1852 24 1 67
#> 1853 24 1 67
#> 1854 23 1 67
#> 1855 26 2 67
#> 1856 29 2 68
#> 1857 29 2 68
#> 1858 28 2 68
#> 1859 24 1 68
#> 1860 25 2 68
#> 1861 26 2 69
#> 1862 24 1 69
#> 1863 30 2 69
#> 1864 21 1 69
#> 1865 31 2 69
#> 1866 30 2 70
#> 1867 28 2 70
#> 1868 28 2 70
#> 1869 30 2 70
#> 1870 28 2 70
#> 1871 26 2 71
#> 1872 35 2 71
#> 1873 28 2 71
#> 1874 30 2 71
#> 1875 26 2 71
#> 1876 27 2 72
#> 1877 35 2 72
#> 1878 28 2 72
#> 1879 28 2 72
#> 1880 29 2 72
#> 1881 31 2 73
#> 1882 31 2 73
#> 1883 33 2 73
#> 1884 31 2 73
#> 1885 27 2 73
#> 1886 25 2 74
#> 1887 31 2 74
#> 1888 30 2 74
#> 1889 31 2 74
#> 1890 31 2 74
#> 1891 31 2 75
#> 1892 31 2 75
#> 1893 25 2 75
#> 1894 29 2 75
#> 1895 29 2 75
#> 1896 25 2 76
#> 1897 35 2 76
#> 1898 30 2 76
#> 1899 30 2 76
#> 1900 33 2 76
#> 1901 33 2 77
#> 1902 30 2 77
#> 1903 26 2 77
#> 1904 33 2 77
#> 1905 33 2 77
#> 1906 28 2 78
#> 1907 26 2 78
#> 1908 30 2 78
#> 1909 36 2 78
#> 1910 34 2 78
#> 1911 29 2 79
#> 1912 32 2 79
#> 1913 31 2 79
#> 1914 29 2 79
#> 1915 29 2 79
#> 1916 33 2 80
#> 1917 31 2 80
#> 1918 34 2 80
#> 1919 34 2 80
#> 1920 34 2 80
#> 1921 29 2 81
#> 1922 39 3 81
#> 1923 34 2 81
#> 1924 33 2 81
#> 1925 33 2 81
#> 1926 35 2 82
#> 1927 34 2 82
#> 1928 30 2 82
#> 1929 32 2 82
#> 1930 33 2 82
#> 1931 31 2 83
#> 1932 35 2 83
#> 1933 33 2 83
#> 1934 36 2 83
#> 1935 33 2 83
#> 1936 34 2 84
#> 1937 32 2 84
#> 1938 33 2 84
#> 1939 33 2 84
#> 1940 31 2 84
#> 1941 35 2 85
#> 1942 34 2 85
#> 1943 38 3 85
#> 1944 36 2 85
#> 1945 36 2 85
#> 1946 31 2 86
#> 1947 38 3 86
#> 1948 39 3 86
#> 1949 34 2 86
#> 1950 34 2 86
#> 1951 30 2 87
#> 1952 33 2 87
#> 1953 34 2 87
#> 1954 36 2 87
#> 1955 32 2 87
#> 1956 35 2 88
#> 1957 34 2 88
#> 1958 37 3 88
#> 1959 33 2 88
#> 1960 34 2 88
#> 1961 37 3 89
#> 1962 34 2 89
#> 1963 34 2 89
#> 1964 36 2 89
#> 1965 36 2 89
#> 1966 36 2 90
#> 1967 37 3 90
#> 1968 36 2 90
#> 1969 38 3 90
#> 1970 32 2 90
#> 1971 38 3 91
#> 1972 39 3 91
#> 1973 35 2 91
#> 1974 37 3 91
#> 1975 37 3 91
#> 1976 34 2 92
#> 1977 35 2 92
#> 1978 35 2 92
#> 1979 33 2 92
#> 1980 37 3 92
#> 1981 39 3 93
#> 1982 32 2 93
#> 1983 38 3 93
#> 1984 39 3 93
#> 1985 38 3 93
#> 1986 37 3 94
#> 1987 39 3 94
#> 1988 38 3 94
#> 1989 37 3 94
#> 1990 38 3 94
#> 1991 38 3 95
#> 1992 39 3 95
#> 1993 36 2 95
#> 1994 38 3 95
#> 1995 37 3 95
#> 1996 39 3 96
#> 1997 36 2 96
#> 1998 39 3 96
#> 1999 39 3 96
#> 2000 39 3 96
#> 2001 40 3 97
#> 2002 40 3 97
#> 2003 40 3 97
#> 2004 38 3 97
#> 2005 36 2 97
#> 2006 38 3 98
#> 2007 39 3 98
#> 2008 39 3 98
#> 2009 40 3 98
#> 2010 40 3 98
#> 2011 40 3 99
#> 2012 40 3 99
#> 2013 39 3 99
#> 2014 39 3 99
#> 2015 39 3 99
#> 2016 40 3 100
#> 2017 40 3 100
#> 2018 40 3 100
#> 2019 40 3 100
#> 2020 40 3 100
#> 2021 0 1 0
#> 2022 0 1 0
#> 2023 0 1 0
#> 2024 0 1 0
#> 2025 0 1 0
#> 2026 1 1 1
#> 2027 1 1 1
#> 2028 0 1 1
#> 2029 1 1 1
#> 2030 0 1 1
#> 2031 0 1 2
#> 2032 1 1 2
#> 2033 2 1 2
#> 2034 1 1 2
#> 2035 0 1 2
#> 2036 1 1 3
#> 2037 0 1 3
#> 2038 0 1 3
#> 2039 0 1 3
#> 2040 2 1 3
#> 2041 3 1 4
#> 2042 1 1 4
#> 2043 0 1 4
#> 2044 2 1 4
#> 2045 3 1 4
#> 2046 2 1 5
#> 2047 4 1 5
#> 2048 1 1 5
#> 2049 2 1 5
#> 2050 0 1 5
#> 2051 2 1 6
#> 2052 3 1 6
#> 2053 3 1 6
#> 2054 2 1 6
#> 2055 2 1 6
#> 2056 2 1 7
#> 2057 2 1 7
#> 2058 3 1 7
#> 2059 5 1 7
#> 2060 1 1 7
#> 2061 4 1 8
#> 2062 2 1 8
#> 2063 5 1 8
#> 2064 2 1 8
#> 2065 1 1 8
#> 2066 5 1 9
#> 2067 3 1 9
#> 2068 4 1 9
#> 2069 2 1 9
#> 2070 6 1 9
#> 2071 0 1 10
#> 2072 2 1 10
#> 2073 4 1 10
#> 2074 3 1 10
#> 2075 6 1 10
#> 2076 4 1 11
#> 2077 8 1 11
#> 2078 5 1 11
#> 2079 1 1 11
#> 2080 3 1 11
#> 2081 2 1 12
#> 2082 8 1 12
#> 2083 4 1 12
#> 2084 2 1 12
#> 2085 9 1 12
#> 2086 4 1 13
#> 2087 7 1 13
#> 2088 7 1 13
#> 2089 4 1 13
#> 2090 7 1 13
#> 2091 4 1 14
#> 2092 2 1 14
#> 2093 6 1 14
#> 2094 5 1 14
#> 2095 2 1 14
#> 2096 6 1 15
#> 2097 8 1 15
#> 2098 7 1 15
#> 2099 4 1 15
#> 2100 11 1 15
#> 2101 3 1 16
#> 2102 5 1 16
#> 2103 8 1 16
#> 2104 4 1 16
#> 2105 5 1 16
#> 2106 7 1 17
#> 2107 8 1 17
#> 2108 6 1 17
#> 2109 9 1 17
#> 2110 7 1 17
#> 2111 6 1 18
#> 2112 5 1 18
#> 2113 7 1 18
#> 2114 6 1 18
#> 2115 7 1 18
#> 2116 9 1 19
#> 2117 12 1 19
#> 2118 5 1 19
#> 2119 7 1 19
#> 2120 8 1 19
#> 2121 15 1 20
#> 2122 11 1 20
#> 2123 10 1 20
#> 2124 6 1 20
#> 2125 7 1 20
#> 2126 10 1 21
#> 2127 12 1 21
#> 2128 9 1 21
#> 2129 12 1 21
#> 2130 3 1 21
#> 2131 8 1 22
#> 2132 9 1 22
#> 2133 8 1 22
#> 2134 5 1 22
#> 2135 7 1 22
#> 2136 6 1 23
#> 2137 7 1 23
#> 2138 7 1 23
#> 2139 9 1 23
#> 2140 5 1 23
#> 2141 7 1 24
#> 2142 8 1 24
#> 2143 11 1 24
#> 2144 13 1 24
#> 2145 11 1 24
#> 2146 9 1 25
#> 2147 9 1 25
#> 2148 7 1 25
#> 2149 13 1 25
#> 2150 15 1 25
#> 2151 10 1 26
#> 2152 8 1 26
#> 2153 13 1 26
#> 2154 12 1 26
#> 2155 13 1 26
#> 2156 10 1 27
#> 2157 11 1 27
#> 2158 11 1 27
#> 2159 14 1 27
#> 2160 12 1 27
#> 2161 10 1 28
#> 2162 10 1 28
#> 2163 10 1 28
#> 2164 15 1 28
#> 2165 15 1 28
#> 2166 13 1 29
#> 2167 10 1 29
#> 2168 17 1 29
#> 2169 10 1 29
#> 2170 14 1 29
#> 2171 10 1 30
#> 2172 15 1 30
#> 2173 11 1 30
#> 2174 14 1 30
#> 2175 8 1 30
#> 2176 13 1 31
#> 2177 6 1 31
#> 2178 13 1 31
#> 2179 9 1 31
#> 2180 14 1 31
#> 2181 13 1 32
#> 2182 10 1 32
#> 2183 14 1 32
#> 2184 15 1 32
#> 2185 13 1 32
#> 2186 10 1 33
#> 2187 14 1 33
#> 2188 14 1 33
#> 2189 11 1 33
#> 2190 10 1 33
#> 2191 21 1 34
#> 2192 17 1 34
#> 2193 14 1 34
#> 2194 13 1 34
#> 2195 15 1 34
#> 2196 14 1 35
#> 2197 11 1 35
#> 2198 14 1 35
#> 2199 13 1 35
#> 2200 11 1 35
#> 2201 14 1 36
#> 2202 13 1 36
#> 2203 13 1 36
#> 2204 17 1 36
#> 2205 13 1 36
#> 2206 19 1 37
#> 2207 17 1 37
#> 2208 15 1 37
#> 2209 18 1 37
#> 2210 13 1 37
#> 2211 16 1 38
#> 2212 23 1 38
#> 2213 14 1 38
#> 2214 17 1 38
#> 2215 15 1 38
#> 2216 17 1 39
#> 2217 16 1 39
#> 2218 11 1 39
#> 2219 17 1 39
#> 2220 21 1 39
#> 2221 18 1 40
#> 2222 12 1 40
#> 2223 10 1 40
#> 2224 14 1 40
#> 2225 16 1 40
#> 2226 14 1 41
#> 2227 21 1 41
#> 2228 11 1 41
#> 2229 11 1 41
#> 2230 13 1 41
#> 2231 17 1 42
#> 2232 19 1 42
#> 2233 16 1 42
#> 2234 22 1 42
#> 2235 16 1 42
#> 2236 17 1 43
#> 2237 22 1 43
#> 2238 15 1 43
#> 2239 13 1 43
#> 2240 20 1 43
#> 2241 20 1 44
#> 2242 15 1 44
#> 2243 24 1 44
#> 2244 18 1 44
#> 2245 15 1 44
#> 2246 21 1 45
#> 2247 16 1 45
#> 2248 21 1 45
#> 2249 12 1 45
#> 2250 24 1 45
#> 2251 14 1 46
#> 2252 19 1 46
#> 2253 15 1 46
#> 2254 21 1 46
#> 2255 15 1 46
#> 2256 18 1 47
#> 2257 19 1 47
#> 2258 18 1 47
#> 2259 19 1 47
#> 2260 21 1 47
#> 2261 17 1 48
#> 2262 18 1 48
#> 2263 23 1 48
#> 2264 15 1 48
#> 2265 17 1 48
#> 2266 21 1 49
#> 2267 18 1 49
#> 2268 16 1 49
#> 2269 22 1 49
#> 2270 18 1 49
#> 2271 16 1 50
#> 2272 24 1 50
#> 2273 19 1 50
#> 2274 23 1 50
#> 2275 17 1 50
#> 2276 28 2 51
#> 2277 21 1 51
#> 2278 30 2 51
#> 2279 23 1 51
#> 2280 26 2 51
#> 2281 16 1 52
#> 2282 17 1 52
#> 2283 29 2 52
#> 2284 24 1 52
#> 2285 19 1 52
#> 2286 15 1 53
#> 2287 19 1 53
#> 2288 26 2 53
#> 2289 20 1 53
#> 2290 24 1 53
#> 2291 28 2 54
#> 2292 22 1 54
#> 2293 20 1 54
#> 2294 27 2 54
#> 2295 21 1 54
#> 2296 22 1 55
#> 2297 24 1 55
#> 2298 26 2 55
#> 2299 25 2 55
#> 2300 20 1 55
#> 2301 26 2 56
#> 2302 22 1 56
#> 2303 23 1 56
#> 2304 23 1 56
#> 2305 26 2 56
#> 2306 21 1 57
#> 2307 19 1 57
#> 2308 24 1 57
#> 2309 22 1 57
#> 2310 21 1 57
#> 2311 23 1 58
#> 2312 22 1 58
#> 2313 27 2 58
#> 2314 20 1 58
#> 2315 23 1 58
#> 2316 24 1 59
#> 2317 22 1 59
#> 2318 22 1 59
#> 2319 21 1 59
#> 2320 20 1 59
#> 2321 28 2 60
#> 2322 21 1 60
#> 2323 23 1 60
#> 2324 24 1 60
#> 2325 22 1 60
#> 2326 23 1 61
#> 2327 27 2 61
#> 2328 29 2 61
#> 2329 23 1 61
#> 2330 25 2 61
#> 2331 27 2 62
#> 2332 26 2 62
#> 2333 28 2 62
#> 2334 23 1 62
#> 2335 25 2 62
#> 2336 21 1 63
#> 2337 24 1 63
#> 2338 26 2 63
#> 2339 24 1 63
#> 2340 25 2 63
#> 2341 23 1 64
#> 2342 23 1 64
#> 2343 23 1 64
#> 2344 28 2 64
#> 2345 25 2 64
#> 2346 23 1 65
#> 2347 24 1 65
#> 2348 29 2 65
#> 2349 31 2 65
#> 2350 25 2 65
#> 2351 29 2 66
#> 2352 28 2 66
#> 2353 30 2 66
#> 2354 28 2 66
#> 2355 26 2 66
#> 2356 31 2 67
#> 2357 31 2 67
#> 2358 27 2 67
#> 2359 28 2 67
#> 2360 26 2 67
#> 2361 32 2 68
#> 2362 31 2 68
#> 2363 20 1 68
#> 2364 28 2 68
#> 2365 25 2 68
#> 2366 28 2 69
#> 2367 27 2 69
#> 2368 26 2 69
#> 2369 28 2 69
#> 2370 26 2 69
#> 2371 29 2 70
#> 2372 31 2 70
#> 2373 33 2 70
#> 2374 27 2 70
#> 2375 27 2 70
#> 2376 23 1 71
#> 2377 28 2 71
#> 2378 28 2 71
#> 2379 29 2 71
#> 2380 34 2 71
#> 2381 30 2 72
#> 2382 30 2 72
#> 2383 29 2 72
#> 2384 33 2 72
#> 2385 29 2 72
#> 2386 28 2 73
#> 2387 34 2 73
#> 2388 30 2 73
#> 2389 24 1 73
#> 2390 27 2 73
#> 2391 30 2 74
#> 2392 29 2 74
#> 2393 27 2 74
#> 2394 28 2 74
#> 2395 27 2 74
#> 2396 29 2 75
#> 2397 27 2 75
#> 2398 32 2 75
#> 2399 29 2 75
#> 2400 29 2 75
#> 2401 28 2 76
#> 2402 33 2 76
#> 2403 32 2 76
#> 2404 30 2 76
#> 2405 27 2 76
#> 2406 32 2 77
#> 2407 36 2 77
#> 2408 28 2 77
#> 2409 32 2 77
#> 2410 33 2 77
#> 2411 26 2 78
#> 2412 27 2 78
#> 2413 32 2 78
#> 2414 31 2 78
#> 2415 35 2 78
#> 2416 33 2 79
#> 2417 32 2 79
#> 2418 25 2 79
#> 2419 34 2 79
#> 2420 33 2 79
#> 2421 31 2 80
#> 2422 33 2 80
#> 2423 29 2 80
#> 2424 31 2 80
#> 2425 31 2 80
#> 2426 27 2 81
#> 2427 35 2 81
#> 2428 31 2 81
#> 2429 34 2 81
#> 2430 36 2 81
#> 2431 33 2 82
#> 2432 32 2 82
#> 2433 34 2 82
#> 2434 31 2 82
#> 2435 33 2 82
#> 2436 33 2 83
#> 2437 32 2 83
#> 2438 34 2 83
#> 2439 37 3 83
#> 2440 32 2 83
#> 2441 31 2 84
#> 2442 31 2 84
#> 2443 34 2 84
#> 2444 33 2 84
#> 2445 32 2 84
#> 2446 35 2 85
#> 2447 36 2 85
#> 2448 34 2 85
#> 2449 35 2 85
#> 2450 36 2 85
#> 2451 36 2 86
#> 2452 35 2 86
#> 2453 36 2 86
#> 2454 38 3 86
#> 2455 39 3 86
#> 2456 34 2 87
#> 2457 33 2 87
#> 2458 37 3 87
#> 2459 30 2 87
#> 2460 34 2 87
#> 2461 34 2 88
#> 2462 34 2 88
#> 2463 38 3 88
#> 2464 35 2 88
#> 2465 33 2 88
#> 2466 36 2 89
#> 2467 34 2 89
#> 2468 37 3 89
#> 2469 32 2 89
#> 2470 39 3 89
#> 2471 34 2 90
#> 2472 37 3 90
#> 2473 34 2 90
#> 2474 39 3 90
#> 2475 33 2 90
#> 2476 35 2 91
#> 2477 38 3 91
#> 2478 34 2 91
#> 2479 39 3 91
#> 2480 34 2 91
#> 2481 37 3 92
#> 2482 34 2 92
#> 2483 38 3 92
#> 2484 35 2 92
#> 2485 39 3 92
#> 2486 38 3 93
#> 2487 36 2 93
#> 2488 39 3 93
#> 2489 38 3 93
#> 2490 39 3 93
#> 2491 38 3 94
#> 2492 38 3 94
#> 2493 40 3 94
#> 2494 36 2 94
#> 2495 36 2 94
#> 2496 38 3 95
#> 2497 39 3 95
#> 2498 40 3 95
#> 2499 40 3 95
#> 2500 40 3 95
#> 2501 38 3 96
#> 2502 40 3 96
#> 2503 38 3 96
#> 2504 37 3 96
#> 2505 38 3 96
#> 2506 37 3 97
#> 2507 40 3 97
#> 2508 39 3 97
#> 2509 39 3 97
#> 2510 38 3 97
#> 2511 38 3 98
#> 2512 37 3 98
#> 2513 40 3 98
#> 2514 40 3 98
#> 2515 40 3 98
#> 2516 39 3 99
#> 2517 40 3 99
#> 2518 40 3 99
#> 2519 40 3 99
#> 2520 39 3 99
#> 2521 40 3 100
#> 2522 40 3 100
#> 2523 40 3 100
#> 2524 40 3 100
#> 2525 40 3 100
#>
#> $d.lower
#> [1] 60
#>
#> $d.upper
#> [1] 90
#>
#> $p.lower
#> [1] 0
#>
#> $p.upper
#> [1] 100
#>
#> attr(,"class")
#> [1] "lqasSim"