Compute the prevalence estimates of wasting on the basis of WFHZ, MFAZ or MUAC
Source:R/prevalence_mfaz.R
, R/prevalence_muac.R
, R/prevalence_wfhz.R
prevalence.Rd
The prevalence is calculated in accordance with the complex sample design properties inherent to surveys. This includes weighting the survey data where applicable and applying PROBIT method estimation (for WFHZ) when the standard deviation is problematic. This is as in the SMART Methodology.
Usage
compute_mfaz_prevalence(df, .wt = NULL, .edema = NULL, .summary_by = NULL)
compute_muac_prevalence(df, .wt = NULL, .edema = NULL, .summary_by = NULL)
compute_wfhz_prevalence(df, .wt = NULL, .edema = NULL, .summary_by = NULL)
Arguments
- df
An already wrangled dataset object of class
data.frame
to use.- .wt
A vector of class
double
of the final survey weights. Default isNULL
assuming a self weighted survey, as in the ENA for SMART software; otherwise, when a vector of weights if supplied, weighted analysis is computed.- .edema
A vector of class
character
of edema. Code should be "y" for presence and "n" for absence of bilateral edema. Default isNULL
.- .summary_by
A vector of class
character
of the geographical areas where the data was collected and for which the analysis should be performed.
Examples
## An example of application of `compute_muac_prevalence()` ----
### When .summary.by = NULL ----
x <- compute_muac_prevalence(
df = anthro.04,
.wt = NULL,
.edema = edema,
.summary_by = NULL
)
print(x)
#> # A tibble: 1 × 3
#> sam_p mam_p gam_p
#> <dbl> <dbl> <dbl>
#> 1 0.0212 0.0889 0.110
### When .summary_by is not set to NULL ----
p <- compute_muac_prevalence(
df = anthro.04,
.wt = NULL,
.edema = edema,
.summary_by = province
)
print(p)
#> # A tibble: 3 × 17
#> province gam_n gam_p gam_p_low gam_p_upp gam_p_deff sam_n sam_p sam_p_low
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Province 1 135 0.104 0.0778 0.130 Inf 19 0.0133 0.00682
#> 2 Province 2 NA 0.112 NA NA NA NA 0.0201 NA
#> 3 Province 3 NA NA NA NA NA NA NA NA
#> # ℹ 8 more variables: sam_p_upp <dbl>, sam_p_deff <dbl>, mam_n <dbl>,
#> # mam_p <dbl>, mam_p_low <dbl>, mam_p_upp <dbl>, mam_p_deff <dbl>,
#> # wt_pop <dbl>
## An example of application of `compute_wfhz_prevalence()` ----
### When .summary_by = NULL ----
anthro.03 |>
mw_wrangle_wfhz(
sex = sex,
weight = weight,
height = height,
.recode_sex = TRUE
) |>
compute_wfhz_prevalence(
.wt = NULL,
.edema = edema,
.summary_by = NULL
)
#> ================================================================================
#> # A tibble: 1 × 16
#> gam_n gam_p gam_p_low gam_p_upp gam_p_deff sam_n sam_p sam_p_low sam_p_upp
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 82 0.0768 0.0571 0.0964 Inf 20 0.00973 0.00351 0.0160
#> # ℹ 7 more variables: sam_p_deff <dbl>, mam_n <dbl>, mam_p <dbl>,
#> # mam_p_low <dbl>, mam_p_upp <dbl>, mam_p_deff <dbl>, wt_pop <dbl>
### When .summary_by is not set to NULL ----
anthro.03 |>
mw_wrangle_wfhz(
sex = sex,
weight = weight,
height = height,
.recode_sex = TRUE
) |>
compute_wfhz_prevalence(
.wt = NULL,
.edema = edema,
.summary_by = district
)
#> ================================================================================
#> # A tibble: 4 × 17
#> district gam_n gam_p gam_p_low gam_p_upp gam_p_deff sam_n sam_p sam_p_low
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Metuge NA 0.0251 NA NA NA NA 0.00155 NA
#> 2 Cahora-Ba… 25 0.0738 0.0348 0.113 Inf 4 0.00336 -0.00348
#> 3 Chiuta 11 0.0444 0.0129 0.0759 Inf 2 0.00444 -0.00466
#> 4 Maravia NA 0.0450 NA NA NA NA 0.00351 NA
#> # ℹ 8 more variables: sam_p_upp <dbl>, sam_p_deff <dbl>, mam_n <dbl>,
#> # mam_p <dbl>, mam_p_low <dbl>, mam_p_upp <dbl>, mam_p_deff <dbl>,
#> # wt_pop <dbl>
### When a weighted analysis is needed ----
anthro.02 |>
compute_wfhz_prevalence(
.wt = "wtfactor",
.edema = edema,
.summary_by = province
)
#> # A tibble: 2 × 17
#> province gam_n gam_p gam_p_low gam_p_upp gam_p_deff sam_n sam_p sam_p_low
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Zambezia 41 0.0261 0.0161 0.0361 1.16 10 0.00236 -0.000255
#> 2 Nampula 80 0.0595 0.0410 0.0779 1.52 33 0.0129 0.00272
#> # ℹ 8 more variables: sam_p_upp <dbl>, sam_p_deff <dbl>, mam_n <dbl>,
#> # mam_p <dbl>, mam_p_low <dbl>, mam_p_upp <dbl>, mam_p_deff <dbl>,
#> # wt_pop <dbl>