Routine CMAM monitoring data from Sudan
Format
A tibble with 8234 rows and 16 columns
Variable | Description |
State | Name of state |
Locality | Name of locality |
Beginning of Month | Cases in programme at beginning of month |
New Admissions | New cases admitted within the month |
Male | New male cases admitted within the month |
Female | New female cases admitted within the month |
Cured | Number of cured cases within the month |
Death | Number of cases who died within the month |
Default | Number of cases who defaulted within the month |
Non-Responder | Number of non-responder cases within the month |
Total Discharge | Total number of discharges within the month |
RUTF Consumed | Number of RUTF consumed |
Screening | Screening |
Sites | Sites |
Month | Month |
Year | Year |
Examples
monitoring
#> # A tibble: 8,234 × 16
#> State Locality `Beginning Of Month` `New Admissions` Male Female Cured Death
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Gaze… El Qura… 16 16 8 8 23 0
#> 2 Gaze… El Qura… 56 24 11 13 0 0
#> 3 Gaze… El Qura… 80 41 16 25 22 0
#> 4 Gaze… El Qura… 81 43 21 22 29 0
#> 5 Gaze… El Qura… 93 51 31 30 36 2
#> 6 Gaze… El Qura… 103 59 34 25 3 0
#> 7 Gaze… El Qura… 163 69 34 35 8 0
#> 8 Gaze… El Qura… 104 108 56 40 6 0
#> 9 Gaze… El Qura… 275 123 61 62 111 0
#> 10 Gaze… El Qura… 204 81 39 40 52 0
#> # ℹ 8,224 more rows
#> # ℹ 8 more variables: Default <dbl>, `Non-Responder` <dbl>,
#> # `Total Discharge` <dbl>, `Rutf Consumed` <dbl>, Screening <dbl>,
#> # Sites <lgl>, Month <chr>, Year <chr>